Cluster analysis and finite-size scaling for Ising spin systems

Based on the connection between the Ising model and a correlated percolation model, we calculate the distribution function for the fraction (c) of lattice sites in percolating clusters in subgraphs with n percolating clusters, f(n)(c), and the distribution function for magnetization (m) in subgraphs...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 60(1999), 3 vom: 30. Sept., Seite 2716-20
1. Verfasser: Tomita, Y (VerfasserIn)
Weitere Verfasser: Okabe, Y, Hu, C K
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM118492128
003 DE-627
005 20250203055208.0
007 tu
008 231222s1999 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0395.xml 
035 |a (DE-627)NLM118492128 
035 |a (NLM)11970074 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tomita, Y  |e verfasserin  |4 aut 
245 1 0 |a Cluster analysis and finite-size scaling for Ising spin systems 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.08.2002 
500 |a Date Revised 28.07.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Based on the connection between the Ising model and a correlated percolation model, we calculate the distribution function for the fraction (c) of lattice sites in percolating clusters in subgraphs with n percolating clusters, f(n)(c), and the distribution function for magnetization (m) in subgraphs with n percolating clusters, p(n)(m). We find that f(n)(c) and p(n)(m) have very good finite-size scaling behavior and that they have universal finite-size scaling functions for the model on square, plane triangular, and honeycomb lattices when aspect ratios of these lattices have the proportions 1:square root[3]/2:square root[3]. The complex structure of the magnetization distribution function p(m) for the system with large aspect ratio could be understood from the independent orientations of two or more percolation clusters in such a system 
650 4 |a Journal Article 
700 1 |a Okabe, Y  |e verfasserin  |4 aut 
700 1 |a Hu, C K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 60(1999), 3 vom: 30. Sept., Seite 2716-20  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:60  |g year:1999  |g number:3  |g day:30  |g month:09  |g pages:2716-20 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 60  |j 1999  |e 3  |b 30  |c 09  |h 2716-20