Cluster analysis and finite-size scaling for Ising spin systems

Based on the connection between the Ising model and a correlated percolation model, we calculate the distribution function for the fraction (c) of lattice sites in percolating clusters in subgraphs with n percolating clusters, f(n)(c), and the distribution function for magnetization (m) in subgraphs...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 60(1999), 3 vom: 30. Sept., Seite 2716-20
1. Verfasser: Tomita, Y (VerfasserIn)
Weitere Verfasser: Okabe, Y, Hu, C K
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Based on the connection between the Ising model and a correlated percolation model, we calculate the distribution function for the fraction (c) of lattice sites in percolating clusters in subgraphs with n percolating clusters, f(n)(c), and the distribution function for magnetization (m) in subgraphs with n percolating clusters, p(n)(m). We find that f(n)(c) and p(n)(m) have very good finite-size scaling behavior and that they have universal finite-size scaling functions for the model on square, plane triangular, and honeycomb lattices when aspect ratios of these lattices have the proportions 1:square root[3]/2:square root[3]. The complex structure of the magnetization distribution function p(m) for the system with large aspect ratio could be understood from the independent orientations of two or more percolation clusters in such a system
Beschreibung:Date Completed 12.08.2002
Date Revised 28.07.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1063-651X