Efficient DNA subcloning through selective restriction endonuclease digestion

Described here is a selective restriction endonuclease digestion method that eliminates the electrophoresis step that is usually used during the subcloning of new DNA sequences into typical E. coli-based plasmids. The method increases yield while decreasing laboratory resource and time utilization....

Description complète

Détails bibliographiques
Publié dans:BioTechniques. - 1991. - 28(2000), 4 vom: 19. Apr., Seite 660-2, 664, 666 passim
Auteur principal: Spear, M A (Auteur)
Format: Article
Langue:English
Publié: 2000
Accès à la collection:BioTechniques
Sujets:Journal Article DNA 9007-49-2 DNA Restriction Enzymes EC 3.1.21.- DNA Ligases EC 6.5.1.-
Description
Résumé:Described here is a selective restriction endonuclease digestion method that eliminates the electrophoresis step that is usually used during the subcloning of new DNA sequences into typical E. coli-based plasmids. The method increases yield while decreasing laboratory resource and time utilization. By using donor and acceptor sequences that contain unique restriction sites found only outside of the intended recombination sequences, the initial digestion products can be directly combined without electrophoresis if the ligation step is followed by a selective digestion using the unique restriction enzymes before transformation. This system is based on the several order of magnitude decrease in transformation efficiency of linearized compared to circular plasmids. As an example, this method was used to obtain recombinants between a 3.6 kb acceptor plasmid and 3.0 kb insert following one ligation reaction after the failure of nine standard reactions using similar amounts of input DNA. It is particularly applicable to situations in which low subcloning efficiencies are expected. The technique can be extended to a large percentage of planned recombinations by using nonidentical compatible cohesive or blunt-ended fragments, or site-directed mutagenesis
Description:Date Completed 09.06.2000
Date Revised 28.09.2018
published: Print
Citation Status MEDLINE
ISSN:1940-9818