|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
JST105134902 |
003 |
DE-627 |
005 |
20240624142030.0 |
007 |
cr uuu---uuuuu |
008 |
180528s2017 xx |||||o 00| ||eng c |
035 |
|
|
|a (DE-627)JST105134902
|
035 |
|
|
|a (JST)90003705
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Argyros, Ioannis K.
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Extending the applicability of Newton’s method using Wang’s– Smale’s –theory
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a Computermedien
|b c
|2 rdamedia
|
338 |
|
|
|a Online-Ressource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Abstract We improve semilocal convergence results for Newton’s method by defining a more precise domain where the Newton iterate lies than in earlier studies using the Smale’s – theory. These improvements are obtained under the same computational cost. Numerical examples are also presented in this study to show that the earlier results cannot apply but the new results can apply to solve equations.
|
650 |
|
4 |
|a Newton’s method
|
650 |
|
4 |
|a Banach space
|
650 |
|
4 |
|a semi-local convergence
|
650 |
|
4 |
|a Smale’s – theory
|
650 |
|
4 |
|a Fréchet-derivative
|
650 |
|
4 |
|a Mathematics
|x Mathematical analysis
|x Numerical analysis
|x Numerical methods
|x Newtons method
|
650 |
|
4 |
|a Mathematics
|x Mathematical procedures
|x Approximation
|x Newton approximation methods
|
650 |
|
4 |
|a Mathematics
|x Mathematical expressions
|x Mathematical theorems
|
655 |
|
4 |
|a research-article
|
700 |
1 |
|
|a George, Santhosh
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Carpathian Journal of Mathematics
|d Sinus Association
|g 33(2017), 1, Seite 27-33
|w (DE-627)894846922
|w (DE-600)2901542-X
|x 18434401
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2017
|g number:1
|g pages:27-33
|
856 |
4 |
0 |
|u https://www.jstor.org/stable/90003705
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_JST
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_20
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_31
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_63
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_100
|
912 |
|
|
|a GBV_ILN_110
|
912 |
|
|
|a GBV_ILN_120
|
912 |
|
|
|a GBV_ILN_206
|
912 |
|
|
|a GBV_ILN_285
|
912 |
|
|
|a GBV_ILN_374
|
912 |
|
|
|a GBV_ILN_702
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2011
|
912 |
|
|
|a GBV_ILN_2014
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2020
|
912 |
|
|
|a GBV_ILN_2021
|
912 |
|
|
|a GBV_ILN_2025
|
912 |
|
|
|a GBV_ILN_2026
|
912 |
|
|
|a GBV_ILN_2027
|
912 |
|
|
|a GBV_ILN_2031
|
912 |
|
|
|a GBV_ILN_2044
|
912 |
|
|
|a GBV_ILN_2048
|
912 |
|
|
|a GBV_ILN_2050
|
912 |
|
|
|a GBV_ILN_2055
|
912 |
|
|
|a GBV_ILN_2056
|
912 |
|
|
|a GBV_ILN_2057
|
912 |
|
|
|a GBV_ILN_2061
|
912 |
|
|
|a GBV_ILN_2088
|
912 |
|
|
|a GBV_ILN_2107
|
912 |
|
|
|a GBV_ILN_2110
|
912 |
|
|
|a GBV_ILN_2111
|
912 |
|
|
|a GBV_ILN_2190
|
912 |
|
|
|a GBV_ILN_2949
|
912 |
|
|
|a GBV_ILN_2950
|
912 |
|
|
|a GBV_ILN_4012
|
912 |
|
|
|a GBV_ILN_4035
|
912 |
|
|
|a GBV_ILN_4037
|
912 |
|
|
|a GBV_ILN_4046
|
912 |
|
|
|a GBV_ILN_4112
|
912 |
|
|
|a GBV_ILN_4126
|
912 |
|
|
|a GBV_ILN_4242
|
912 |
|
|
|a GBV_ILN_4251
|
912 |
|
|
|a GBV_ILN_4305
|
912 |
|
|
|a GBV_ILN_4307
|
912 |
|
|
|a GBV_ILN_4322
|
912 |
|
|
|a GBV_ILN_4323
|
912 |
|
|
|a GBV_ILN_4325
|
912 |
|
|
|a GBV_ILN_4335
|
912 |
|
|
|a GBV_ILN_4346
|
912 |
|
|
|a GBV_ILN_4393
|
912 |
|
|
|a GBV_ILN_4700
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2017
|e 1
|h 27-33
|