Extending the applicability of Newton’s method using Wang’s– Smale’s 𝛼–theory

Abstract We improve semilocal convergence results for Newton’s method by defining a more precise domain where the Newton iterate lies than in earlier studies using the Smale’s 𝛼– theory. These improvements are obtained under the same computational cost. Numerical examples are also presented in this...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Carpathian Journal of Mathematics. - Sinus Association. - 33(2017), 1, Seite 27-33
1. Verfasser: Argyros, Ioannis K. (VerfasserIn)
Weitere Verfasser: George, Santhosh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Carpathian Journal of Mathematics
Schlagworte:Newton’s method Banach space semi-local convergence Smale’s 𝛼– theory Fréchet-derivative Mathematics
LEADER 01000caa a22002652 4500
001 JST105134902
003 DE-627
005 20240624142030.0
007 cr uuu---uuuuu
008 180528s2017 xx |||||o 00| ||eng c
035 |a (DE-627)JST105134902 
035 |a (JST)90003705 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Argyros, Ioannis K.  |e verfasserin  |4 aut 
245 1 0 |a Extending the applicability of Newton’s method using Wang’s– Smale’s –theory 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Abstract We improve semilocal convergence results for Newton’s method by defining a more precise domain where the Newton iterate lies than in earlier studies using the Smale’s – theory. These improvements are obtained under the same computational cost. Numerical examples are also presented in this study to show that the earlier results cannot apply but the new results can apply to solve equations. 
650 4 |a Newton’s method 
650 4 |a Banach space 
650 4 |a semi-local convergence 
650 4 |a Smale’s – theory 
650 4 |a Fréchet-derivative 
650 4 |a Mathematics  |x Mathematical analysis  |x Numerical analysis  |x Numerical methods  |x Newtons method 
650 4 |a Mathematics  |x Mathematical procedures  |x Approximation  |x Newton approximation methods 
650 4 |a Mathematics  |x Mathematical expressions  |x Mathematical theorems 
655 4 |a research-article 
700 1 |a George, Santhosh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Carpathian Journal of Mathematics  |d Sinus Association  |g 33(2017), 1, Seite 27-33  |w (DE-627)894846922  |w (DE-600)2901542-X  |x 18434401  |7 nnns 
773 1 8 |g volume:33  |g year:2017  |g number:1  |g pages:27-33 
856 4 0 |u https://www.jstor.org/stable/90003705  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_70 
912 |a GBV_ILN_100 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_206 
912 |a GBV_ILN_285 
912 |a GBV_ILN_374 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 33  |j 2017  |e 1  |h 27-33