A Kiefer-Wolfowitz Theorem for Convex Densities

Kiefer and Wolfowitz ["Z. Wahrsch. Verw. Gebiete" 34 (1976) 73-85] showed that if F is a strictly curved concave distribution function (corresponding to a strictly monotone density f), then the Maximum Likelihood Estimator $\widehat{F}_{n}$ , which is, in fact, the least concave majorant o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Lecture Notes-Monograph Series. - Institute of Mathematical Statistics, 1982. - 55(2007) vom: Jan., Seite 1-31
1. Verfasser: Balabdaoui, Fadoua (VerfasserIn)
Weitere Verfasser: Wellner, Jon A.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Lecture Notes-Monograph Series
Schlagworte:Primary 62G10 Primary 62G20 secondary 62G30 Brownian bridge convex density distance empirical distribution invelope process monotone density optimality theory mehr... shape constraints Mathematics Information science Physical sciences
LEADER 01000caa a22002652 4500
001 JST055255124
003 DE-627
005 20240622004759.0
007 cr uuu---uuuuu
008 150324s2007 xx |||||o 00| ||eng c
035 |a (DE-627)JST055255124 
035 |a (JST)20461482 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Balabdaoui, Fadoua  |e verfasserin  |4 aut 
245 1 2 |a A Kiefer-Wolfowitz Theorem for Convex Densities 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Kiefer and Wolfowitz ["Z. Wahrsch. Verw. Gebiete" 34 (1976) 73-85] showed that if F is a strictly curved concave distribution function (corresponding to a strictly monotone density f), then the Maximum Likelihood Estimator $\widehat{F}_{n}$ , which is, in fact, the least concave majorant of the empirical distribution function ${\Bbb F}_{n}$ , differs from the empirical distribution function in the uniform norm by no more than a constant times $(n^{-1}\text{log}n)^{2/3}$ almost surely. We review their result and give an updated version of their proof. We prove a comparable theorem for the class of distribution functions F with convex decreasing densities f, but with the maximum likelihood estimator $\widehat{F}_{n}$ of F replaced by the least squares estimator $\tilde{F}_{n}$ : if X₁,..., $X_{n}$ are sampled from a distribution function F with strictly convex density f, then the least squares estimator $\tilde{F}_{n}$ of F and the empirical distribution function ${\Bbb F}_{n}$ differ in the uniform norm by no more than a constant times $(n^{-1}\text{log}n)^{3/5}$ almost surely. The proofs rely on bounds on the interpolation error for complete spline interpolation due to Hall ["J. Approximation Theory" 1 (1968) 209-218], Hall and Meyer ["J. Approximation Theory 16" (1976) 105-122], building on earlier work by Birkhoff and de Boor ["J. Math. Mech." 13 (1964) 827-835]. These results, which are crucial for the developments here, are all nicely summarized and exposited in de Boor ["A Practical Guide to Splines" (2001) Springer, New York]. 
540 |a Copyright 2007 Institute of Mathematical Statistics 
650 4 |a Primary 62G10 
650 4 |a Primary 62G20 
650 4 |a secondary 62G30 
650 4 |a Brownian bridge 
650 4 |a convex density 
650 4 |a distance 
650 4 |a empirical distribution 
650 4 |a invelope process 
650 4 |a monotone density 
650 4 |a optimality theory 
650 4 |a shape constraints 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Distribution functions 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Inferential statistics  |x Statistical estimation  |x Estimation methods  |x Estimators 
650 4 |a Mathematics  |x Mathematical analysis  |x Numerical analysis  |x Interpolation 
650 4 |a Mathematics  |x Applied mathematics  |x Analytics  |x Analytical estimating  |x Maximum likelihood estimation 
650 4 |a Mathematics  |x Mathematical expressions  |x Mathematical theorems 
650 4 |a Information science  |x Information analysis  |x Data analysis  |x Regression analysis  |x Linear regression  |x Least squares 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Density  |x Density measurement  |x Density estimation 
650 4 |a Mathematics  |x Applied mathematics  |x Game theory  |x Minimax 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Statistical theories 
650 4 |a Mathematics  |x Mathematical procedures  |x Approximation 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Distribution functions 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Inferential statistics  |x Statistical estimation  |x Estimation methods  |x Estimators 
650 4 |a Mathematics  |x Mathematical analysis  |x Numerical analysis  |x Interpolation 
650 4 |a Mathematics  |x Applied mathematics  |x Analytics  |x Analytical estimating  |x Maximum likelihood estimation 
650 4 |a Mathematics  |x Mathematical expressions  |x Mathematical theorems 
650 4 |a Information science  |x Information analysis  |x Data analysis  |x Regression analysis  |x Linear regression  |x Least squares 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Density  |x Density measurement  |x Density estimation 
650 4 |a Mathematics  |x Applied mathematics  |x Game theory  |x Minimax 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Statistical theories 
650 4 |a Mathematics  |x Mathematical procedures  |x Approximation 
655 4 |a research-article 
700 1 |a Wellner, Jon A.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Lecture Notes-Monograph Series  |d Institute of Mathematical Statistics, 1982  |g 55(2007) vom: Jan., Seite 1-31  |w (DE-627)583817815  |w (DE-600)2460925-0  |x 07492170  |7 nnns 
773 1 8 |g volume:55  |g year:2007  |g month:01  |g pages:1-31 
856 4 0 |u https://www.jstor.org/stable/20461482  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2938 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4392 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 55  |j 2007  |c 01  |h 1-31