Spectral Measure of Large Random Hankel, Markov and Toeplitz Matrices

We study the limiting spectral measure of large symmetric random matrices of linear algebraic structure. For Hankel and Toeplitz matrices generated by i.i.d. random variables $\{X_{k}\}$ of unit variance, and for symmetric Markov matrices generated by i.i.d. random variables $\{X_{ij}\}_{j>i}...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The Annals of Probability. - Institute of Mathematical Statistics. - 34(2006), 1, Seite 1-38
1. Verfasser: Bryc, Włodzimierz (VerfasserIn)
Weitere Verfasser: Dembo, Amir, Jiang, Tiefeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:The Annals of Probability
Schlagworte:Random matrix theory Spectral measure Free convolution Eulerian numbers Mathematics Physical sciences
LEADER 01000caa a22002652 4500
001 JST009237968
003 DE-627
005 20240619183209.0
007 cr uuu---uuuuu
008 150323s2006 xx |||||o 00| ||eng c
035 |a (DE-627)JST009237968 
035 |a (JST)25449860 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
084 |a 15A52  |2 MSC 
084 |a 60F99  |2 MSC 
084 |a 62H10  |2 MSC 
084 |a 60F10  |2 MSC 
100 1 |a Bryc, Włodzimierz  |e verfasserin  |4 aut 
245 1 0 |a Spectral Measure of Large Random Hankel, Markov and Toeplitz Matrices 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We study the limiting spectral measure of large symmetric random matrices of linear algebraic structure. For Hankel and Toeplitz matrices generated by i.i.d. random variables $\{X_{k}\}$ of unit variance, and for symmetric Markov matrices generated by i.i.d. random variables $\{X_{ij}\}_{j>i}$ of zero mean and unit variance, scaling the eigenvalues by $\sqrt{n}$ we prove the almost sure, weak convergence of the spectral measures to universal, nonrandom, symmetric distributions $\gamma _{H}$ , $\gamma _{M}$ and $\gamma _{T}$ of unbounded support. The moments of $\gamma _{H}$ and $\gamma _{T}$ are the sum of volumes of solids related to Eulerian numbers, whereas $\gamma _{M}$ has a bounded smooth density given by the free convolution of the semicircle and normal densities. For symmetric Markov matrices generated by i.i.d. random variables $\{X_{ij}\}_{j>i}$ of mean m and finite variance, scaling the eigenvalues by n we prove the almost sure, weak convergence of the spectral measures to the atomic measure at -m. If m = 0, and the fourth moment is finite, we prove that the spectral norm of ${\bf M}_{n}$ scaled by $\sqrt{2n\,{\rm log}\,n}$ log n converges almost surely to 1. 
540 |a Copyright 2006 The Institute of Mathematical Statistics 
650 4 |a Random matrix theory 
650 4 |a Spectral measure 
650 4 |a Free convolution 
650 4 |a Eulerian numbers 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Distribution functions  |x Probability distributions  |x Mathematical moments 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Euclidean geometry  |x Plane geometry  |x Vertices 
650 4 |a Mathematics  |x Pure mathematics  |x Linear algebra  |x Matrix theory  |x Eigenvalues 
650 4 |a Mathematics  |x Pure mathematics  |x Linear algebra  |x Matrix theory  |x Matrices 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Geometric shapes  |x Semicircles 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Density 
650 4 |a Mathematics  |x Pure mathematics  |x Linear algebra  |x Matrix theory  |x Matrices  |x Covariance matrices 
650 4 |a Mathematics  |x Pure mathematics  |x Discrete mathematics  |x Number theory  |x Numbers  |x Real numbers  |x Rational numbers  |x Integers  |x Zero 
650 4 |a Mathematics  |x Pure mathematics  |x Probability theory  |x Random variables 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Descriptive statistics  |x Statistical distributions  |x Distribution functions  |x Probability distributions  |x Mathematical moments 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Euclidean geometry  |x Plane geometry  |x Vertices 
650 4 |a Mathematics  |x Pure mathematics  |x Linear algebra  |x Matrix theory  |x Eigenvalues 
650 4 |a Mathematics  |x Pure mathematics  |x Linear algebra  |x Matrix theory  |x Matrices 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Geometric shapes  |x Semicircles 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Density 
650 4 |a Mathematics  |x Pure mathematics  |x Linear algebra  |x Matrix theory  |x Matrices  |x Covariance matrices 
650 4 |a Mathematics  |x Pure mathematics  |x Discrete mathematics  |x Number theory  |x Numbers  |x Real numbers  |x Rational numbers  |x Integers  |x Zero 
655 4 |a research-article 
700 1 |a Dembo, Amir  |e verfasserin  |4 aut 
700 1 |a Jiang, Tiefeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Annals of Probability  |d Institute of Mathematical Statistics  |g 34(2006), 1, Seite 1-38  |w (DE-627)270938249  |w (DE-600)1478769-6  |x 00911798  |7 nnns 
773 1 8 |g volume:34  |g year:2006  |g number:1  |g pages:1-38 
856 4 0 |u https://www.jstor.org/stable/25449860  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 34  |j 2006  |e 1  |h 1-38