On Asymptotics of Eigenvectors of Large Sample Covariance Matrix
Let $\{X_{ij}\}$, i, j =..., be a double array of i.i.d. complex random variables with EX₁₁ = 0, E|X₁₁|² = 1 and E|X₁₁|⁴ < ∞, and let $A_{n}=\frac{1}{N}T_{n}^{1/2}X_{n}X_{n}^{\ast }T_{n}^{1/2}$, where $T_{n}^{1/2}$ is the square root of a nonnegative definite matrix $T_{n}$ and $X_{n}$ is the...
Publié dans: | The Annals of Probability. - Institute of Mathematical Statistics. - 35(2007), 4, Seite 1532-1572 |
---|---|
Auteur principal: | |
Autres auteurs: | , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2007
|
Accès à la collection: | The Annals of Probability |
Sujets: | Asymptotic distribution Central limit theorems CDMA Eigenvectors and eigenvalues Empirical spectral distribution function Haar distribution MIMO Random matrix theory Sample covariance matrix SIR plus... |
Accès en ligne |
Volltext |