On Asymptotics of Eigenvectors of Large Sample Covariance Matrix

Let $\{X_{ij}\}$, i, j =..., be a double array of i.i.d. complex random variables with EX₁₁ = 0, E|X₁₁|² = 1 and E|X₁₁|⁴ < ∞, and let $A_{n}=\frac{1}{N}T_{n}^{1/2}X_{n}X_{n}^{\ast }T_{n}^{1/2}$, where $T_{n}^{1/2}$ is the square root of a nonnegative definite matrix $T_{n}$ and $X_{n}$ is the...

Description complète

Détails bibliographiques
Publié dans:The Annals of Probability. - Institute of Mathematical Statistics. - 35(2007), 4, Seite 1532-1572
Auteur principal: Bai, Z. D. (Auteur)
Autres auteurs: Miao, B. Q., Pan, G. M.
Format: Article en ligne
Langue:English
Publié: 2007
Accès à la collection:The Annals of Probability
Sujets:Asymptotic distribution Central limit theorems CDMA Eigenvectors and eigenvalues Empirical spectral distribution function Haar distribution MIMO Random matrix theory Sample covariance matrix SIR plus... Stieltjes transform Strong convergence Mathematics Information science