On Asymptotics of Eigenvectors of Large Sample Covariance Matrix
Let $\{X_{ij}\}$, i, j =..., be a double array of i.i.d. complex random variables with EX₁₁ = 0, E|X₁₁|² = 1 and E|X₁₁|⁴ < ∞, and let $A_{n}=\frac{1}{N}T_{n}^{1/2}X_{n}X_{n}^{\ast }T_{n}^{1/2}$, where $T_{n}^{1/2}$ is the square root of a nonnegative definite matrix $T_{n}$ and $X_{n}$ is the...
| Veröffentlicht in: | The Annals of Probability. - Institute of Mathematical Statistics. - 35(2007), 4, Seite 1532-1572 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2007
|
| Zugriff auf das übergeordnete Werk: | The Annals of Probability |
| Schlagworte: | Asymptotic distribution Central limit theorems CDMA Eigenvectors and eigenvalues Empirical spectral distribution function Haar distribution MIMO Random matrix theory Sample covariance matrix SIR mehr... |
| Online verfügbar |
Volltext |