Functional morphology of the sting in two digger wasps (Hymenoptera: Crabronidae) with different types of prey transport
Digger wasps of the family Crabronidae (Insecta: Hymenoptera) are generally known to use their sting to paralyze or kill a prey. However, only a few species of digger wasps transport their prey to the nest impaled on the sting. How sting morphology correlates with this peculiar type of prey carriage...
Veröffentlicht in: | Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.] |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019transfer abstract
|
Zugriff auf das übergeordnete Werk: | Ventricular Restraint Improves Outcomes in HF Patients with CRT |
Schlagworte: | Female genitalia Ovipositor CLSM Structure Insect Cuticle composition |
Zusammenfassung: | Digger wasps of the family Crabronidae (Insecta: Hymenoptera) are generally known to use their sting to paralyze or kill a prey. However, only a few species of digger wasps transport their prey to the nest impaled on the sting. How sting morphology correlates with this peculiar type of prey carriage is still unclear. We examined the sting morphology of two phylogenetically closely-related species of digger wasps of similar size, which hunt for similar preys but use different types of prey transportation. Data from light microscopy (LM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were analyzed to find possible correlations between shape, material composition, and function of the stings. The similarity of the material composition in the stings of the two species suggests that the material of stings does not play a dominant role in their functional differences. On the contrary, differences in the curvature and surface sculpture of sting elements likely result in different stress distributions under mechanical loading. Digger wasps of the family Crabronidae (Insecta: Hymenoptera) are generally known to use their sting to paralyze or kill a prey. However, only a few species of digger wasps transport their prey to the nest impaled on the sting. How sting morphology correlates with this peculiar type of prey carriage is still unclear. We examined the sting morphology of two phylogenetically closely-related species of digger wasps of similar size, which hunt for similar preys but use different types of prey transportation. Data from light microscopy (LM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were analyzed to find possible correlations between shape, material composition, and function of the stings. The similarity of the material composition in the stings of the two species suggests that the material of stings does not play a dominant role in their functional differences. On the contrary, differences in the curvature and surface sculpture of sting elements likely result in different stress distributions under mechanical loading. |
---|---|
DOI: | 10.1016/j.asd.2019.100882 |