Pygidial glands of <ce:italic>Harpalus pensylvanicus</ce:italic> (Coleoptera: Carabidae) contain resilin-rich structures

The pygidial gland system is a key innovation in adephagan beetles, producing, storing, and spraying defensive chemical compounds. As the source of defensive chemical production and storage, the pygidial gland system experiences severe chemical stress which challenges the integrity of the entire gla...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.]
1. Verfasser: Rork, Adam M. (VerfasserIn)
Weitere Verfasser: Mikó, István (BerichterstatterIn), Renner, Tanya (BerichterstatterIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019transfer abstract
Zugriff auf das übergeordnete Werk:Ventricular Restraint Improves Outcomes in HF Patients with CRT
Schlagworte:Exocrine glands Functional morphology Resilin Carabidae Histology Confocal laser scanning microscopy
Umfang:7
LEADER 01000caa a22002652 4500
001 ELV046376216
003 DE-627
005 20230626013608.0
007 cr uuu---uuuuu
008 191021s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.asd.2018.12.004  |2 doi 
028 5 2 |a GBV00000000000578.pica 
035 |a (DE-627)ELV046376216 
035 |a (ELSEVIER)S1467-8039(18)30183-X 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
082 0 4 |a 610  |q VZ 
082 0 4 |a 670  |q VZ 
084 |a 51.75  |2 bkl 
100 1 |a Rork, Adam M.  |e verfasserin  |4 aut 
245 1 0 |a Pygidial glands of <ce:italic>Harpalus pensylvanicus</ce:italic> (Coleoptera: Carabidae) contain resilin-rich structures 
264 1 |c 2019transfer abstract 
300 |a 7 
336 |a nicht spezifiziert  |b zzz  |2 rdacontent 
337 |a nicht spezifiziert  |b z  |2 rdamedia 
338 |a nicht spezifiziert  |b zu  |2 rdacarrier 
520 |a The pygidial gland system is a key innovation in adephagan beetles, producing, storing, and spraying defensive chemical compounds. As the source of defensive chemical production and storage, the pygidial gland system experiences severe chemical stress which challenges the integrity of the entire gland system. Here, we utilize autofluorescence-based confocal laser scanning microscopy to examine the morphology of pygidial gland secretory lobes and collecting ductules in a common Pennsylvanian harpaline species, Harpalus pensylvanicus. The glandular units are composed of type-III exocrine cells which empty into resilin-rich ductules, which themselves lead into a larger resilin-rich collecting duct, and ultimately the pygidial reservoir pump. We also utilize histological staining with toluidine blue and brightfield imaging to provide additional support for the presence of resilin in the collecting duct, as toluidine blue has been shown to stain resilin without metachromasia. We hypothesize that the high resilin content of the collecting ducts might be a widespread key evolutionary adaptation to prevent damage caused by physical and chemical stress generated in pump-containing insect exocrine gland systems. 
520 |a The pygidial gland system is a key innovation in adephagan beetles, producing, storing, and spraying defensive chemical compounds. As the source of defensive chemical production and storage, the pygidial gland system experiences severe chemical stress which challenges the integrity of the entire gland system. Here, we utilize autofluorescence-based confocal laser scanning microscopy to examine the morphology of pygidial gland secretory lobes and collecting ductules in a common Pennsylvanian harpaline species, Harpalus pensylvanicus. The glandular units are composed of type-III exocrine cells which empty into resilin-rich ductules, which themselves lead into a larger resilin-rich collecting duct, and ultimately the pygidial reservoir pump. We also utilize histological staining with toluidine blue and brightfield imaging to provide additional support for the presence of resilin in the collecting duct, as toluidine blue has been shown to stain resilin without metachromasia. We hypothesize that the high resilin content of the collecting ducts might be a widespread key evolutionary adaptation to prevent damage caused by physical and chemical stress generated in pump-containing insect exocrine gland systems. 
650 7 |a Exocrine glands  |2 Elsevier 
650 7 |a Functional morphology  |2 Elsevier 
650 7 |a Resilin  |2 Elsevier 
650 7 |a Carabidae  |2 Elsevier 
650 7 |a Histology  |2 Elsevier 
650 7 |a Confocal laser scanning microscopy  |2 Elsevier 
700 1 |a Mikó, István  |4 oth 
700 1 |a Renner, Tanya  |4 oth 
773 0 8 |i Enthalten in  |n Elsevier Science  |t Ventricular Restraint Improves Outcomes in HF Patients with CRT  |d 2011  |g Amsterdam [u.a.]  |w (DE-627)ELV015921530 
773 1 8 |g volume:49  |g year:2019  |g pages:19-25  |g extent:7 
856 4 0 |u https://doi.org/10.1016/j.asd.2018.12.004  |3 Volltext 
912 |a GBV_USEFLAG_U 
912 |a GBV_ELV 
912 |a SYSFLAG_U 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_49 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_90 
912 |a GBV_ILN_100 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_131 
912 |a GBV_ILN_179 
912 |a GBV_ILN_227 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_694 
912 |a GBV_ILN_697 
912 |a GBV_ILN_807 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2019 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2124 
912 |a GBV_ILN_2156 
912 |a GBV_ILN_2208 
912 |a GBV_ILN_2469 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2505 
936 b k |a 51.75  |j Verbundwerkstoffe  |j Schichtstoffe  |q VZ 
951 |a AR 
952 |d 49  |j 2019  |h 19-25  |g 7