Pygidial glands of <ce:italic>Harpalus pensylvanicus</ce:italic> (Coleoptera: Carabidae) contain resilin-rich structures
The pygidial gland system is a key innovation in adephagan beetles, producing, storing, and spraying defensive chemical compounds. As the source of defensive chemical production and storage, the pygidial gland system experiences severe chemical stress which challenges the integrity of the entire gla...
Veröffentlicht in: | Ventricular Restraint Improves Outcomes in HF Patients with CRT. - 2011. - Amsterdam [u.a.] |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019transfer abstract
|
Zugriff auf das übergeordnete Werk: | Ventricular Restraint Improves Outcomes in HF Patients with CRT |
Schlagworte: | Exocrine glands Functional morphology Resilin Carabidae Histology Confocal laser scanning microscopy |
Umfang: | 7 |
Zusammenfassung: | The pygidial gland system is a key innovation in adephagan beetles, producing, storing, and spraying defensive chemical compounds. As the source of defensive chemical production and storage, the pygidial gland system experiences severe chemical stress which challenges the integrity of the entire gland system. Here, we utilize autofluorescence-based confocal laser scanning microscopy to examine the morphology of pygidial gland secretory lobes and collecting ductules in a common Pennsylvanian harpaline species, Harpalus pensylvanicus. The glandular units are composed of type-III exocrine cells which empty into resilin-rich ductules, which themselves lead into a larger resilin-rich collecting duct, and ultimately the pygidial reservoir pump. We also utilize histological staining with toluidine blue and brightfield imaging to provide additional support for the presence of resilin in the collecting duct, as toluidine blue has been shown to stain resilin without metachromasia. We hypothesize that the high resilin content of the collecting ducts might be a widespread key evolutionary adaptation to prevent damage caused by physical and chemical stress generated in pump-containing insect exocrine gland systems. The pygidial gland system is a key innovation in adephagan beetles, producing, storing, and spraying defensive chemical compounds. As the source of defensive chemical production and storage, the pygidial gland system experiences severe chemical stress which challenges the integrity of the entire gland system. Here, we utilize autofluorescence-based confocal laser scanning microscopy to examine the morphology of pygidial gland secretory lobes and collecting ductules in a common Pennsylvanian harpaline species, Harpalus pensylvanicus. The glandular units are composed of type-III exocrine cells which empty into resilin-rich ductules, which themselves lead into a larger resilin-rich collecting duct, and ultimately the pygidial reservoir pump. We also utilize histological staining with toluidine blue and brightfield imaging to provide additional support for the presence of resilin in the collecting duct, as toluidine blue has been shown to stain resilin without metachromasia. We hypothesize that the high resilin content of the collecting ducts might be a widespread key evolutionary adaptation to prevent damage caused by physical and chemical stress generated in pump-containing insect exocrine gland systems. |
---|---|
Beschreibung: | 7 |
DOI: | 10.1016/j.asd.2018.12.004 |