Zur Einfuhrung einer begrifflichen Perspektive in die Mathematik: Dedekind, Noether, vanderWaerden

For the Introduction of a Conceptual Perspective in Mathematics: Dedekind, Noether, vanderWaerden. [double low quotation mark]She [Noether] then appeared as the creator of a new direction in algebra and became the leader, the most consistent and brilliant representative, of a particular mathematical...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Berichte zur Wissenschaftsgeschichte. - Weinheim : Wiley-VCH Verl.-Ges., 1978. - 38(2015), 3, Seite 243
1. Verfasser: Mechthild Koreuber (VerfasserIn)
Format: Aufsatz
Sprache:German
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Berichte zur Wissenschaftsgeschichte
Schlagworte:Algebra Mathematics
LEADER 01000caa a2200265 4500
001 OLC1968639519
003 DE-627
005 20230714172829.0
007 tu
008 160206s2015 xx ||||| 00| ||ger c
024 7 |a 10.1002/bewi.201501729  |2 doi 
028 5 2 |a PQ20160617 
035 |a (DE-627)OLC1968639519 
035 |a (DE-599)GBVOLC1968639519 
035 |a (PRQ)p808-18ba3a1660eaa33fc3f686e998aa36b15b021e5a3fba53446d4632c0fadb5fda3 
035 |a (KEY)0106027920150000038000300243zureinfuhrungeinerbegrifflichenperspektiveindiemat 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a ger 
082 0 4 |a 01  |a 000  |a 050  |a 060  |a 080  |a 700  |q DNB 
082 0 4 |a 900  |q AVZ 
084 |a LING  |2 fid 
084 |a HIST  |2 fid 
100 0 |a Mechthild Koreuber  |e verfasserin  |4 aut 
245 1 0 |a Zur Einfuhrung einer begrifflichen Perspektive in die Mathematik: Dedekind, Noether, vanderWaerden 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
520 |a For the Introduction of a Conceptual Perspective in Mathematics: Dedekind, Noether, vanderWaerden. [double low quotation mark]She [Noether] then appeared as the creator of a new direction in algebra and became the leader, the most consistent and brilliant representative, of a particular mathematical doctrine - of all that is characterized by the term [single low quotation mark]Begriffliche Mathematik'."2 The aim of this paper is to illuminate this "new direction", which can be characterized as a conceptual [begriffliche] perspective in mathematics, and to comprehend its roots and trace its establishment. Field, ring, ideal, the core concepts of this new direction in mathematical images of knowledge, were conceptualized by Richard Dedekind (1831-1916) within the scope of his number theory research and associated with an understanding of a formation of concepts as a "free creation of the human spirit"3. They thus stand for an abstract perspective of mathematics in their entirety, described as 'modern algebra' in the 1920s and 1930s, leading to an understanding of mathematics as structural sciences. The establishment of this approach to mathematics, which is based on "general mathematical concepts" [allgemein-mathematische Begriffe]4, was the success of a cultural movement whose most important protagonists included Emmy Noether (1882-1935) and her pupil Bartel L. vanderWaerden (1903-1996). With the use of the term 'conceptual', a perspective is taken in the analysis which allows for developing connections between the thinking of Dedekind, the "working and conceptual methods" [Arbeits- und Auffassungsmethoden]5 of Noether as well as the methodological approach, represented through the thought space of the Noether School as presented under the term "conceptual world" [Begriffswelt]6 in the Moderne Algebra of vanderWaerden. This essay thus makes a contribution to the history of the introduction of a structural perspective in mathematics, a perspective that is inseparable from the mathematical impact of Noether, her reception of the work of Dedekind and the creative strength of the Noether School. 
650 4 |a Algebra 
650 4 |a Mathematics 
773 0 8 |i Enthalten in  |t Berichte zur Wissenschaftsgeschichte  |d Weinheim : Wiley-VCH Verl.-Ges., 1978  |g 38(2015), 3, Seite 243  |w (DE-627)129330124  |w (DE-600)134475-4  |w (DE-576)014584131  |x 0170-6233  |7 nnns 
773 1 8 |g volume:38  |g year:2015  |g number:3  |g pages:243 
856 4 1 |u http://dx.doi.org/10.1002/bewi.201501729  |3 Volltext 
856 4 2 |u http://search.proquest.com/docview/1708933458 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_OLC 
912 |a FID-LING 
912 |a FID-HIST 
912 |a SSG-OLC-BUB 
912 |a SSG-OLC-HSW 
912 |a SSG-OPC-BBI 
912 |a SSG-OPC-ANG 
912 |a GBV_ILN_11 
912 |a GBV_ILN_22 
912 |a GBV_ILN_39 
912 |a GBV_ILN_50 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_72 
912 |a GBV_ILN_105 
912 |a GBV_ILN_171 
912 |a GBV_ILN_179 
912 |a GBV_ILN_267 
912 |a GBV_ILN_350 
912 |a GBV_ILN_694 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2016 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2043 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2505 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4028 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4277 
912 |a GBV_ILN_4302 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4311 
912 |a GBV_ILN_4318 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4346 
951 |a AR 
952 |d 38  |j 2015  |e 3  |h 243