|  |  |  |  | 
| LEADER | 01000naa a22002652c 4500 | 
| 001 | NLM394446275 | 
| 003 | DE-627 | 
| 005 | 20251023233340.0 | 
| 007 | cr uuu---uuuuu | 
| 008 | 251023s2025    xx |||||o     00| ||eng c | 
| 024 | 7 |  | |a 10.1080/09593330.2025.2573838 
  |2 doi | 
| 028 | 5 | 2 | |a pubmed25n1608.xml | 
| 035 |  |  | |a (DE-627)NLM394446275 | 
| 035 |  |  | |a (NLM)41126645 | 
| 040 |  |  | |a DE-627 
  |b ger 
  |c DE-627 
  |e rakwb | 
| 041 |  |  | |a eng | 
| 100 | 1 |  | |a Wang, Hao 
  |e verfasserin 
  |4 aut | 
| 245 | 1 | 0 | |a Fulvic-iron synergy enhances sediment iron-bound phosphorus immobilization and organic pollutant removal with electrode intervention | 
| 264 |  | 1 | |c 2025 | 
| 336 |  |  | |a Text 
  |b txt 
  |2 rdacontent | 
| 337 |  |  | |a ƒaComputermedien 
  |b c 
  |2 rdamedia | 
| 338 |  |  | |a ƒa Online-Ressource 
  |b cr 
  |2 rdacarrier | 
| 500 |  |  | |a Date Revised 23.10.2025 | 
| 500 |  |  | |a published: Print-Electronic | 
| 500 |  |  | |a Citation Status Publisher | 
| 520 |  |  | |a Excessive phosphorus discharge into lacustrine systems was recognized as a primary factor for eutrophication, significantly disrupting the ecological equilibrium of freshwater ecosystems. Effectively controlling endogenous phosphorus release from sediment reservoirs constitutes a fundamental prerequisite for mitigating this environmental challenge. In this study, a sediment microbial fuel cell (SMFC) was developed to address the challenges of sediment-bound phosphorus mobilization. Sediment Total Organic Carbon (TOC) removal in CC-FA-0.2 yielded 2.25 times greater than the control, indicative of aromatic and fulvic acid degradation. Phosphorus in interstitial water decreased by 66% in closed-circuit (CC) reactors, with sequential fractionation revealing enhanced iron-bound phosphorus (BD-P) retention in sediment (105% increase in CC-FA-0.05 vs. versus control). Fe(Ⅲ) redox cycling under SMFC operation maintained higher Fe(Ⅲ) retention (58-54% vs. 51-52% in open-circuit), critical for phosphate immobilization. Microbial profiling identified Proteobacteria (20.41%) and Desulfobacterota (20.41%) as dominant phyla, with genera like Geobacter and Sideroxydans synergistically driving Fe(Ⅲ)/Fe(Ⅱ) cycling and extracellular electron transfer. This study establishes a novel bioelectrochemical strategy based on fulvic-iron synergy, which drive a sustainable electrode-iron-humus redox cycle. This process offers a highly effective and sustainable approach for the simultaneous immobilization of sediment phosphorus and removal of organic pollutants in situ | 
| 650 |  | 4 | |a Journal Article | 
| 650 |  | 4 | |a Electron transfer | 
| 650 |  | 4 | |a bioremediation | 
| 650 |  | 4 | |a endogenous phosphorus | 
| 650 |  | 4 | |a fulvic acid | 
| 650 |  | 4 | |a organic pollutants | 
| 700 | 1 |  | |a Zhou, Lean 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Wang, Shu 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Tan, Shanning 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Xu, Chong 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Sun, Shiquan 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Wang, Jinting 
  |e verfasserin 
  |4 aut | 
| 773 | 0 | 8 | |i Enthalten in 
  |t Environmental technology 
  |d 1993 
  |g (2025) vom: 23. Okt., Seite 1-13 
  |w (DE-627)NLM098202545 
  |x 1479-487X 
  |7 nnas | 
| 773 | 1 | 8 | |g year:2025 
  |g day:23 
  |g month:10 
  |g pages:1-13 | 
| 856 | 4 | 0 | |u http://dx.doi.org/10.1080/09593330.2025.2573838 
  |3 Volltext | 
| 912 |  |  | |a GBV_USEFLAG_A | 
| 912 |  |  | |a SYSFLAG_A | 
| 912 |  |  | |a GBV_NLM | 
| 912 |  |  | |a GBV_ILN_350 | 
| 951 |  |  | |a AR | 
| 952 |  |  | |j 2025 
  |b 23 
  |c 10 
  |h 1-13 |