Self-Limiting Synthesis of Supported Nanoparticle Superlattices on Diverse Substrates via Surface Coordination Chemistry

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 22. Okt., Seite e14372
1. Verfasser: Gao, Yifan (VerfasserIn)
Weitere Verfasser: Cai, Qingfu, Xia, Shenxin, Yang, Dong, Li, Tongtao, Dong, Angang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article multimetal nanoparticles superlattices supported catalysts surface coordination chemistry
LEADER 01000naa a22002652c 4500
001 NLM394395360
003 DE-627
005 20251023232646.0
007 cr uuu---uuuuu
008 251023s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202514372  |2 doi 
028 5 2 |a pubmed25n1607.xml 
035 |a (DE-627)NLM394395360 
035 |a (NLM)41122034 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Yifan  |e verfasserin  |4 aut 
245 1 0 |a Self-Limiting Synthesis of Supported Nanoparticle Superlattices on Diverse Substrates via Surface Coordination Chemistry 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a High-loading, uniformly dispersed nanoparticles (NPs) on functional substrates are vital for advanced catalysis and energy storage, yet remain difficult to realize because of particle aggregation, size polydispersity, and weak interfacial binding. Herein, a versatile and scalable self-limiting synthesis strategy based on surface coordination chemistry is presented to fabricate compositionally tunable NP superlattices on a broad range of substrates-including carbon nanotubes, graphene oxide, carbon fibers, silicon wafers, and natural shells. This approach leverages the selective adsorption of sodium oleate onto substrate surfaces through hydrogen bonding between its carboxyl groups and surface hydroxyl or carboxyl groups, creating a reactive interface for site-specific cation exchange with mono- to multinary metal ions. Subsequent pyrolysis converts the exchanged layer into NPs, while the self-limiting mechanism-driven by precursor exhaustion and ligand passivation-ensures uniform NP sizes and spontaneous assembly into ordered superlattices. As a functional demonstration, high-density deposition of complex FeMnCoZnCeNiOx NPs on commercial carbon nanotubes is achieved, showcasing their enhanced performance as catalytic sulfur hosts in lithium-sulfur batteries. This strategy offers a robust pathway to integrate precision nanochemistry with scalable materials processing, opening new possibilities for advanced energy storage and catalysis 
650 4 |a Journal Article 
650 4 |a multimetal nanoparticles 
650 4 |a superlattices 
650 4 |a supported catalysts 
650 4 |a surface coordination chemistry 
700 1 |a Cai, Qingfu  |e verfasserin  |4 aut 
700 1 |a Xia, Shenxin  |e verfasserin  |4 aut 
700 1 |a Yang, Dong  |e verfasserin  |4 aut 
700 1 |a Li, Tongtao  |e verfasserin  |4 aut 
700 1 |a Dong, Angang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 22. Okt., Seite e14372  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2025  |g day:22  |g month:10  |g pages:e14372 
856 4 0 |u http://dx.doi.org/10.1002/adma.202514372  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 22  |c 10  |h e14372