|
|
|
|
| LEADER |
01000naa a22002652c 4500 |
| 001 |
NLM394395255 |
| 003 |
DE-627 |
| 005 |
20251023232646.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
251023s2025 xx |||||o 00| ||eng c |
| 024 |
7 |
|
|a 10.1002/adma.202514029
|2 doi
|
| 028 |
5 |
2 |
|a pubmed25n1607.xml
|
| 035 |
|
|
|a (DE-627)NLM394395255
|
| 035 |
|
|
|a (NLM)41122028
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Ren, Ziqi
|e verfasserin
|4 aut
|
| 245 |
1 |
0 |
|a Spatial Decoupling Strategy Enhanced Ionic Liquid-Confined Porous MXene for Breakthrough Osmotic Energy Conversion
|
| 264 |
|
1 |
|c 2025
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
| 500 |
|
|
|a Date Revised 22.10.2025
|
| 500 |
|
|
|a published: Print-Electronic
|
| 500 |
|
|
|a Citation Status Publisher
|
| 520 |
|
|
|a © 2025 Wiley‐VCH GmbH.
|
| 520 |
|
|
|a The potential of reverse electrodialysis for harvesting osmotic energy is severely limited by ion concentration polarization (ICP), a phenomenon that restricts power output and confines the technology to the laboratory scale (< 0.4 µW). This challenge is overcome with an ionic liquid confined porous MXene (IPM) system that integrates strategies across two scales. At the microscopic level, sub-nanometer channels are engineered using porous MXene and confined ionic liquids to reduce mass transfer resistance and optimize ion transport. Concurrently, at the macroscopic level, a micropore array design spatially decouples the diffusion interfaces to effectively suppress the ICP effect. This dual-scale approach increases power density by 53.6% and achieves a maximum output power of 3.47 µW, which is nearly ten times higher than that of similar work. The work demonstrates a robust pathway for overcoming critical power limitations, advancing osmotic energy conversion toward industrial renewable energy applications
|
| 650 |
|
4 |
|a Journal Article
|
| 650 |
|
4 |
|a ion concentration polarization
|
| 650 |
|
4 |
|a ionic liquid
|
| 650 |
|
4 |
|a porous MXene
|
| 650 |
|
4 |
|a spatial decoupling
|
| 700 |
1 |
|
|a Zhang, Qixiang
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Yin, Jianyu
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Deng, Mingfang
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Zhou, Xubin
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Yao, Qianqian
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Li, Songzhan
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Gao, Yihua
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Liu, Nishuang
|e verfasserin
|4 aut
|
| 773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2025) vom: 22. Okt., Seite e14029
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
| 773 |
1 |
8 |
|g year:2025
|g day:22
|g month:10
|g pages:e14029
|
| 856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202514029
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_NLM
|
| 912 |
|
|
|a GBV_ILN_350
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|j 2025
|b 22
|c 10
|h e14029
|