Spatial Decoupling Strategy Enhanced Ionic Liquid-Confined Porous MXene for Breakthrough Osmotic Energy Conversion

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 22. Okt., Seite e14029
1. Verfasser: Ren, Ziqi (VerfasserIn)
Weitere Verfasser: Zhang, Qixiang, Yin, Jianyu, Deng, Mingfang, Zhou, Xubin, Yao, Qianqian, Li, Songzhan, Gao, Yihua, Liu, Nishuang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article ion concentration polarization ionic liquid porous MXene spatial decoupling
LEADER 01000naa a22002652c 4500
001 NLM394395255
003 DE-627
005 20251023232646.0
007 cr uuu---uuuuu
008 251023s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202514029  |2 doi 
028 5 2 |a pubmed25n1607.xml 
035 |a (DE-627)NLM394395255 
035 |a (NLM)41122028 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ren, Ziqi  |e verfasserin  |4 aut 
245 1 0 |a Spatial Decoupling Strategy Enhanced Ionic Liquid-Confined Porous MXene for Breakthrough Osmotic Energy Conversion 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a The potential of reverse electrodialysis for harvesting osmotic energy is severely limited by ion concentration polarization (ICP), a phenomenon that restricts power output and confines the technology to the laboratory scale (< 0.4 µW). This challenge is overcome with an ionic liquid confined porous MXene (IPM) system that integrates strategies across two scales. At the microscopic level, sub-nanometer channels are engineered using porous MXene and confined ionic liquids to reduce mass transfer resistance and optimize ion transport. Concurrently, at the macroscopic level, a micropore array design spatially decouples the diffusion interfaces to effectively suppress the ICP effect. This dual-scale approach increases power density by 53.6% and achieves a maximum output power of 3.47 µW, which is nearly ten times higher than that of similar work. The work demonstrates a robust pathway for overcoming critical power limitations, advancing osmotic energy conversion toward industrial renewable energy applications 
650 4 |a Journal Article 
650 4 |a ion concentration polarization 
650 4 |a ionic liquid 
650 4 |a porous MXene 
650 4 |a spatial decoupling 
700 1 |a Zhang, Qixiang  |e verfasserin  |4 aut 
700 1 |a Yin, Jianyu  |e verfasserin  |4 aut 
700 1 |a Deng, Mingfang  |e verfasserin  |4 aut 
700 1 |a Zhou, Xubin  |e verfasserin  |4 aut 
700 1 |a Yao, Qianqian  |e verfasserin  |4 aut 
700 1 |a Li, Songzhan  |e verfasserin  |4 aut 
700 1 |a Gao, Yihua  |e verfasserin  |4 aut 
700 1 |a Liu, Nishuang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 22. Okt., Seite e14029  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2025  |g day:22  |g month:10  |g pages:e14029 
856 4 0 |u http://dx.doi.org/10.1002/adma.202514029  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 22  |c 10  |h e14029