Deep Subspace Clustering Under Class Relation Constraint

Deep subspace clustering uses latent features instead of raw images to construct the self-expression coefficient matrix. Existing methods primarily focus on optimizing the self-expression coefficient matrix, often neglecting the impact of latent features. However, better latent features are more in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2025) vom: 17. Okt.
1. Verfasser: Zhao, Xuemei (VerfasserIn)
Weitere Verfasser: Xiong, Yusong, Wu, Jun, Inthasone, Somsack, Wang, Haijian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM394217047
003 DE-627
005 20251018232424.0
007 cr uuu---uuuuu
008 251018s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3620635  |2 doi 
028 5 2 |a pubmed25n1603.xml 
035 |a (DE-627)NLM394217047 
035 |a (NLM)41105536 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Xuemei  |e verfasserin  |4 aut 
245 1 0 |a Deep Subspace Clustering Under Class Relation Constraint 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Deep subspace clustering uses latent features instead of raw images to construct the self-expression coefficient matrix. Existing methods primarily focus on optimizing the self-expression coefficient matrix, often neglecting the impact of latent features. However, better latent features are more in line with the self-representation assumption and results in a better self-expression coefficient matrix, which construct a chain relationship. Based on the chain relationship, this paper proposes a Class Relation Constraint (CRC) induced Deep Subspace Clustering (DSC) method to improve the representation ability of latent features. First, an intra- and inter-class weighted constraint is proposed to enhance latent data separability in subspaces. Then, to further remove negative samples inside a subspace, a contrastive loss function is introduced within the diagonal blocks of the self-expression coefficient matrix, i.e. the same subspace, under the guidance of spectral clustering results. Along with the enhanced representation ability on latent features and corresponding diagonal blocks, the self-expression coefficient matrix can provide more accurate data relationships for spectral clustering. Experimental results on multiple benchmark datasets have validated the effectiveness of the proposed DSCCRC method, particularly in handling small samples and complex datasets 
650 4 |a Journal Article 
700 1 |a Xiong, Yusong  |e verfasserin  |4 aut 
700 1 |a Wu, Jun  |e verfasserin  |4 aut 
700 1 |a Inthasone, Somsack  |e verfasserin  |4 aut 
700 1 |a Wang, Haijian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2025) vom: 17. Okt.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:17  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3620635  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 17  |c 10