Cross-domain Few-shot Medical Image Segmentation via Dynamic Semantic Matching

Cross-domain few-shot medical image segmentation (CDFSMIS) presents the fundamental challenge of segmenting novel anatomical or tissue structures on unfamiliar medical imaging domains with limited annotated data. In this paper, we conduct an in-depth investigation of CDFSMIS and identify two critica...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2025) vom: 13. Okt.
1. Verfasser: Zhu, Yazhou (VerfasserIn)
Weitere Verfasser: Wang, Shidong, Zhou, Tao, Li, Zechao, Zhang, Haofeng, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM393990990
003 DE-627
005 20251015232840.0
007 cr uuu---uuuuu
008 251015s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3618396  |2 doi 
028 5 2 |a pubmed25n1599.xml 
035 |a (DE-627)NLM393990990 
035 |a (NLM)41082426 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Yazhou  |e verfasserin  |4 aut 
245 1 0 |a Cross-domain Few-shot Medical Image Segmentation via Dynamic Semantic Matching 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Cross-domain few-shot medical image segmentation (CDFSMIS) presents the fundamental challenge of segmenting novel anatomical or tissue structures on unfamiliar medical imaging domains with limited annotated data. In this paper, we conduct an in-depth investigation of CDFSMIS and identify two critical observations: (a) the conventional matching mechanisms from existing few-shot models are particularly vulnerable to discrepancies in local characteristics between different domains and (b) the semantic representations learned from source domains often lack robustness when generalizing to unfamiliar target domains. Motivated by these insights, we propose a novel Dynamic Semantic Matching (DSM) framework that addresses these challenges through a three-component approach. First, we design a support-query feature re-weighting (SFR) mechanism that leverages multilevel hidden features to suppress domain-specific contents. Second, we introduce a dynamic semantic information selection (DSIS) strategy that adaptively identifies and combines domain-robust channels to construct generalizable representations. Third, we develop a dual-perspective semantic center calculation method to address the inherent texture imbalance in medical images. Extensive experiments on four unfamiliar target domains (MS-CMR, PI-PMR, Chest-X-Ray and ISIC2018) demonstrate that our approach significantly outperforms state-of-the-art few-shot segmentation and cross-domain few-shot segmentation models, validating the effectiveness of DSM in simultaneously addressing domain generalization and semantic matching challenges in medical image segmentation. The source code is available at https://github.com/YazhouZhu19/DSM 
650 4 |a Journal Article 
700 1 |a Wang, Shidong  |e verfasserin  |4 aut 
700 1 |a Zhou, Tao  |e verfasserin  |4 aut 
700 1 |a Li, Zechao  |e verfasserin  |4 aut 
700 1 |a Zhang, Haofeng  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2025) vom: 13. Okt.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:13  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3618396  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 13  |c 10