|
|
|
|
| LEADER |
01000naa a22002652c 4500 |
| 001 |
NLM393941132 |
| 003 |
DE-627 |
| 005 |
20251015232309.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
251015s2025 xx |||||o 00| ||eng c |
| 024 |
7 |
|
|a 10.1002/adma.202513641
|2 doi
|
| 028 |
5 |
2 |
|a pubmed25n1598.xml
|
| 035 |
|
|
|a (DE-627)NLM393941132
|
| 035 |
|
|
|a (NLM)41077909
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Luo, Wen-Lin
|e verfasserin
|4 aut
|
| 245 |
1 |
0 |
|a From Self-Healing to Smart-Healing
|b A Self-Diagnosing and Self-Healing System Based on Artificial Intelligence
|
| 264 |
|
1 |
|c 2025
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
| 500 |
|
|
|a Date Revised 13.10.2025
|
| 500 |
|
|
|a published: Print-Electronic
|
| 500 |
|
|
|a Citation Status Publisher
|
| 520 |
|
|
|a © 2025 Wiley‐VCH GmbH.
|
| 520 |
|
|
|a Creating materials that can heal themselves while also being strong, stable, and quick to repair presents a major scientific challenge, as existing materials often sacrifice one of these properties for another. To address this limitation, a conductive composite is developed by incorporating ionic liquids into a common plastic. Measurable changes in the material's electrical properties enable damage detection. When a crack is detected, a small electric current is applied to the area, generating localized heat that melts the plastic to seamlessly seal the damage. This process is integrated with an artificial intelligence (AI) system that autonomously detects damage, triggers healing, and confirms repair completion. By establishing a complete perception-healing-feedback loop, this work realizes the conceptual leap from self-healing to smart-healing, pioneering a new generation of autonomous materials
|
| 650 |
|
4 |
|a Journal Article
|
| 650 |
|
4 |
|a artificial intelligence
|
| 650 |
|
4 |
|a self‐healing
|
| 650 |
|
4 |
|a smart‐healing
|
| 700 |
1 |
|
|a Xu, Yao-Yao
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Cheng, Xiong
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Wang, Fang-Zhou
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Sun, Da-Ying
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Huang, Xiao-Dong
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Gu, Wen-Hua
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Li, Cheng-Hui
|e verfasserin
|4 aut
|
| 773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2025) vom: 12. Okt., Seite e13641
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
| 773 |
1 |
8 |
|g year:2025
|g day:12
|g month:10
|g pages:e13641
|
| 856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202513641
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_NLM
|
| 912 |
|
|
|a GBV_ILN_350
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|j 2025
|b 12
|c 10
|h e13641
|