CMOS-Compatible LiNbO3 Domain-Wall Entropy Engine for Ultrafast True Random Number Generation

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 11. Okt., Seite e10981
Auteur principal: Tang, Haiyue (Auteur)
Autres auteurs: Wang, Zilong, Wang, Xinglong, Hu, Xianyu, Hu, Di, Huang, Qianwei, Zhang, Wendi, Jiang, Anquan
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article domain wall ferroelectric domain switching hardware security lithium niobate true‐random‐number generator
LEADER 01000naa a22002652c 4500
001 NLM39388208X
003 DE-627
005 20251011232533.0
007 cr uuu---uuuuu
008 251011s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202510981  |2 doi 
028 5 2 |a pubmed25n1596.xml 
035 |a (DE-627)NLM39388208X 
035 |a (NLM)41074658 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Haiyue  |e verfasserin  |4 aut 
245 1 0 |a CMOS-Compatible LiNbO3 Domain-Wall Entropy Engine for Ultrafast True Random Number Generation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Random ferroelectric domain nucleation and growth lead to the generation of numerous unpredictable microscopic states that collectively form a natural high-entropy system. Conventional electrical methods can directly measure reversible domain switching currents, offering a viable platform for true random number generation (TRNG). However, TRNG based on random ferroelectric switching events is limited by the noise amplitudes in electrical signals. In this study, TRNG is realized via the stochastic formation of conductive domain walls in single-crystal LiNbO3 thin films bonded to SiO2/Si wafers. This approach achieves a noise amplitude and cycling endurance >500 nA and >1010, respectively. The interfacial-layer-based device exhibits self-reinitialized stochastic sub-10-ns domain switching operations, enabling ultrafast generation of bit outputs and flexible device scaling. The generated random bitstreams, validated via National Institute of Standards and Technology (NIST)tests, exhibit robust resistance against machine-learning-based predictive attacks. This pioneering study establishes ferroelectric conductive domain walls as groundbreaking platforms for CMOS-compatible entropy source extraction, effectively addressing the long-standing challenges in amplifying entropy signals with operational robustness 
650 4 |a Journal Article 
650 4 |a domain wall 
650 4 |a ferroelectric domain switching 
650 4 |a hardware security 
650 4 |a lithium niobate 
650 4 |a true‐random‐number generator 
700 1 |a Wang, Zilong  |e verfasserin  |4 aut 
700 1 |a Wang, Xinglong  |e verfasserin  |4 aut 
700 1 |a Hu, Xianyu  |e verfasserin  |4 aut 
700 1 |a Hu, Di  |e verfasserin  |4 aut 
700 1 |a Huang, Qianwei  |e verfasserin  |4 aut 
700 1 |a Zhang, Wendi  |e verfasserin  |4 aut 
700 1 |a Jiang, Anquan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 11. Okt., Seite e10981  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2025  |g day:11  |g month:10  |g pages:e10981 
856 4 0 |u http://dx.doi.org/10.1002/adma.202510981  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 11  |c 10  |h e10981