Synergistic Molecular Engineering of Crosslinked Polymer Dielectrics for High-Temperature Capacitive Energy Storage
© 2025 Wiley‐VCH GmbH.
| Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 10. Okt., Seite e13483 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , , , , , , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2025
|
| Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
| Sujets: | Journal Article ROMP capacitive energy storage crosslinked polymer high‐temperature dielectrics modular molecular engineering |
| Résumé: | © 2025 Wiley‐VCH GmbH. Polymer dielectric capacitors are critical for high-temperature energy storage, yet current materials face a trade-off between thermal stability and capacitive performance due to conduction loss or insufficient polarization. Here, a modular molecular engineering to simultaneously optimize molecular polarity, topological crosslinking, and free volume in alicyclic polymers is designed. By incorporating thermally crosslinkable benzocyclobutene (BCB) and sulfone-methyl (─SO2CH3) groups into norbornene-based monomers via ring-opening metathesis polymerization (ROMP), crosslinked networks with decoupled non-conjugated backbones and polar moieties are constructed. The polymers exhibit a wide optical bandgap (Eg > 3.7 eV), high thermal stability (Tg > 350 °C), and suppressed dissipation (Df ≈ 0.0006). Optimized P50-B250 delivers an exceptional discharged energy density (Ud) of 8.00 J cm-3 at 150 °C (≥90% efficiency), while fully crosslinked P0-B300 retained Ud of 7.34 J cm-3 at 200 °C and 4.65 J cm-3 at 250 °C, outperforming conventional dielectrics. Molecular dynamics (MD) simulations revealed that crosslinking increases free volume fraction by ≈40%, inhibiting interchain charge transfer complexes (CTCs). Density functional theory (DFT) calculations confirm that sulfonyl-enhanced polarization and crosslinking collectively restrict charge migration. This work establishes a general framework for designing polymer dielectrics by integrating structural modularity and topological control, offering pathways for next-generation energy storage applications under extreme conditions |
|---|---|
| Description: | Date Revised 11.10.2025 published: Print-Electronic Citation Status Publisher |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202513483 |