Synergistic Molecular Engineering of Crosslinked Polymer Dielectrics for High-Temperature Capacitive Energy Storage

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 10. Okt., Seite e13483
1. Verfasser: He, Yan (VerfasserIn)
Weitere Verfasser: Sun, Quan, Xue, Rui, Wang, Qi, Guan, Aijiao, Zhang, Pingxia, Xu, Jingcheng, Ran, Zhaoyu, Li, Qi, Fu, Wenxin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article ROMP capacitive energy storage crosslinked polymer high‐temperature dielectrics modular molecular engineering
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
Polymer dielectric capacitors are critical for high-temperature energy storage, yet current materials face a trade-off between thermal stability and capacitive performance due to conduction loss or insufficient polarization. Here, a modular molecular engineering to simultaneously optimize molecular polarity, topological crosslinking, and free volume in alicyclic polymers is designed. By incorporating thermally crosslinkable benzocyclobutene (BCB) and sulfone-methyl (─SO2CH3) groups into norbornene-based monomers via ring-opening metathesis polymerization (ROMP), crosslinked networks with decoupled non-conjugated backbones and polar moieties are constructed. The polymers exhibit a wide optical bandgap (Eg > 3.7 eV), high thermal stability (Tg > 350 °C), and suppressed dissipation (Df ≈ 0.0006). Optimized P50-B250 delivers an exceptional discharged energy density (Ud) of 8.00 J cm-3 at 150 °C (≥90% efficiency), while fully crosslinked P0-B300 retained Ud of 7.34 J cm-3 at 200 °C and 4.65 J cm-3 at 250 °C, outperforming conventional dielectrics. Molecular dynamics (MD) simulations revealed that crosslinking increases free volume fraction by ≈40%, inhibiting interchain charge transfer complexes (CTCs). Density functional theory (DFT) calculations confirm that sulfonyl-enhanced polarization and crosslinking collectively restrict charge migration. This work establishes a general framework for designing polymer dielectrics by integrating structural modularity and topological control, offering pathways for next-generation energy storage applications under extreme conditions
Beschreibung:Date Revised 11.10.2025
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202513483