PFIG-Palm : Controllable Palmprint Generation via Pixel and Feature Identity Guidance

Palmprint recognition offers a promising solution for convenient and private authentication. However, the scarcity of large-scale palmprint datasets constrains its development and application. Recent approaches have sought to mitigate this issue by synthesizing palmprints based on Bézier curves. Due...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 14., Seite 6603-6615
Auteur principal: Zou, Yuchen (Auteur)
Autres auteurs: Shao, Huikai, Liu, Chengcheng, Zhu, Siyu, Hou, Zongqing, Zhong, Dexing
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM393727009
003 DE-627
005 20251015232745.0
007 cr uuu---uuuuu
008 251008s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3616611  |2 doi 
028 5 2 |a pubmed25n1599.xml 
035 |a (DE-627)NLM393727009 
035 |a (NLM)41056170 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zou, Yuchen  |e verfasserin  |4 aut 
245 1 0 |a PFIG-Palm  |b Controllable Palmprint Generation via Pixel and Feature Identity Guidance 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.10.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Palmprint recognition offers a promising solution for convenient and private authentication. However, the scarcity of large-scale palmprint datasets constrains its development and application. Recent approaches have sought to mitigate this issue by synthesizing palmprints based on Bézier curves. Due to the lack of paired data between curves and palmprints, it is difficult to generate curve-driven palmprints with precise identity. To address this challenge, we propose a novel Pixel and Feature Identity Guidance (PFIG) framework to synthesize realistic palmprints, whose IDs are strictly governed by the Bézier curves. In order to establish ID mapping, an ID Injection (IDI) module is constructed to synthesize pseudo-paired data. Two cross-domain ID consistency losses at pixel and feature levels are further proposed to strictly preserve the semantic information of the input ID curves. Experimental results demonstrate that our ID-guided approach can synthesize more realistic palmprints with controllable identities. Based on only 80,000 synthesized palmprints for pre-training, the recognition accuracy can be improved by more than 18% in terms of TAR1e-6. When trained exclusively on synthetic data, our method achieves superior performance to existing synthetic approaches. The source code is available at https://github.com/YuchenZou/PFIG-Palm 
650 4 |a Journal Article 
700 1 |a Shao, Huikai  |e verfasserin  |4 aut 
700 1 |a Liu, Chengcheng  |e verfasserin  |4 aut 
700 1 |a Zhu, Siyu  |e verfasserin  |4 aut 
700 1 |a Hou, Zongqing  |e verfasserin  |4 aut 
700 1 |a Zhong, Dexing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 14., Seite 6603-6615  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:14  |g pages:6603-6615 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3616611  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 14  |h 6603-6615