Bulk-Rashba Effect with Suppressed Spin Relaxation in a Polar Phase of Bi1- xIn1+ xO3

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 39 vom: 07. Okt., Seite e2504684
1. Verfasser: Kang, Deokyoung (VerfasserIn)
Weitere Verfasser: Lu, Xue-Zeng, Acharya, Megha, Husain, Sajid, Harris, Isaac, Behera, Piush, Lin, Ching-Che, Banyas, Ella, Smith, Alex, Ricci, Francesco, Zhu, Menglin, Denzer, Bridget R, Terlier, Tanguy, Wang, Shu, Kim, Tae Yeon, Caretta, Lucas, Natelson, Douglas, LeBeau, James M, Neaton, Jeffrey B, Ramesh, Ramamoorthy, Rondinelli, James M, Martin, Lane W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Rashba coupling density functional theory epitaxy magnetotransport spintronics
Beschreibung
Zusammenfassung:© 2025 Wiley‐VCH GmbH.
The Rashba effect enables control over the spin degree of freedom, particularly in polar materials where the polar symmetry couples to Rashba-type spin splitting. The exploration of this effect, however, has been hindered by the scarcity of polar materials exhibiting the bulk-Rashba effect and rapid spin-relaxation effects dictated by the D'yakonov-Perel mechanism. Here, a polar LiNbO3-type R3c phase of Bi1- xIn1+ xO3 with x ≈0.15-0.24 is stabilized via epitaxial growth, which exhibits a bulk-Rashba effect with suppressed spin relaxation as a result of its unidirectional spin texture. As compared to the previously observed non-polar Pnma phase, this polar phase exhibits higher conductivity, reduced bandgap, and enhanced dielectric and piezoelectric responses. Combining first-principles calculations and multimodal magnetotransport measurements, which reveal weak (anti)localization, anisotropic magnetoresistance, planar-Hall effect, and nonreciprocal charge transport, a bulk-Rashba effect without rapid spin relaxation is demonstrated. These findings offer insights into spin-orbit coupling physics within polar oxides and suggest potential spintronic applications
Beschreibung:Date Revised 08.10.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202504684