Objective Bayesian trend filtering via adaptive piecewise polynomial regression

© 2025 Informa UK Limited, trading as Taylor & Francis Group.

Détails bibliographiques
Publié dans:Journal of applied statistics. - 1991. - 52(2025), 13 vom: 18., Seite 2357-2383
Auteur principal: Kang, Sang Gil (Auteur)
Autres auteurs: Kim, Yongku
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Journal of applied statistics
Sujets:Journal Article Bayes factor intrinsic prior model selection nonparameteric regression piecewise polynomial regression trend filtering
LEADER 01000naa a22002652c 4500
001 NLM393633985
003 DE-627
005 20251007232039.0
007 cr uuu---uuuuu
008 251007s2025 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2025.2461186  |2 doi 
028 5 2 |a pubmed25n1591.xml 
035 |a (DE-627)NLM393633985 
035 |a (NLM)41048359 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kang, Sang Gil  |e verfasserin  |4 aut 
245 1 0 |a Objective Bayesian trend filtering via adaptive piecewise polynomial regression 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2025 
500 |a Date Revised 06.10.2025 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Several methods have been developed for nonparametric regression problems, including classical approaches such as kernels, local polynomials, smoothing splines, sieves, and wavelets, as well as relatively new methods such as lasso, generalized lasso, and trend filtering. This study proposes an objective Bayesian trend filtering method based on model selection. The procedure followed in this study estimates the functions based on adaptive piecewise polynomial regression models with two components. First, we determine the intervals with varying trends using Bayesian binary segmentation and then evaluate the most reasonable trend via Bayesian model selection at these intervals. This trend filtering procedure follows Bayesian model selection that uses intrinsic priors, which eliminated any subjective input. Additionally, we prove that the proposed method using these intrinsic priors was consistent when applied to large sample sizes. The behavior of the proposed Bayesian trend filtering procedure is compared with the trend filtering using a simulation study and real examples. Finally, we apply the proposed method to detect the variance change points under mean changes, whereas the existing methods yielded inaccurate estimates of the variance change points when the mean varied smoothly, as the sudden-change assumption was violated in such cases 
650 4 |a Journal Article 
650 4 |a Bayes factor 
650 4 |a intrinsic prior 
650 4 |a model selection 
650 4 |a nonparameteric regression 
650 4 |a piecewise polynomial regression 
650 4 |a trend filtering 
700 1 |a Kim, Yongku  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 52(2025), 13 vom: 18., Seite 2357-2383  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:52  |g year:2025  |g number:13  |g day:18  |g pages:2357-2383 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2025.2461186  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2025  |e 13  |b 18  |h 2357-2383