Bridging Laboratory Catalysts with Industrial Proton Exchange Membrane Water Electrolyzers

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 04. Okt., Seite e12414
1. Verfasser: Rong, Chengli (VerfasserIn)
Weitere Verfasser: Meyer, Quentin, Lu, Haochen, Zhao, Chuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article electrocatalysts hydrogen evolution reaction oxygen evolution reaction proton exchange membrane water electrolyzers water electrolysis
LEADER 01000naa a22002652c 4500
001 NLM393597164
003 DE-627
005 20251004232318.0
007 cr uuu---uuuuu
008 251004s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202512414  |2 doi 
028 5 2 |a pubmed25n1589.xml 
035 |a (DE-627)NLM393597164 
035 |a (NLM)41045187 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rong, Chengli  |e verfasserin  |4 aut 
245 1 0 |a Bridging Laboratory Catalysts with Industrial Proton Exchange Membrane Water Electrolyzers 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a The development of highly active catalysts has significantly advanced water electrolysis for green hydrogen production. However, translating these materials from laboratory-scale demonstrations to industrial proton exchange membrane water electrolyzers (PEMWEs) remains a major challenge. In this perspective, key gaps are identified between academic electrocatalyst research for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic media and the stringent requirements of industrial PEMWEs. The scalability and industrial relevance of current catalyst synthesis and electrode fabrication techniques are critically analyzed, proposing scalable routes such as plasma-enhanced atomic layer deposition, roll-to-roll processing, and electrodeposition. The discrepancies in testing protocols between three-electrode aqueous cells, membrane electrode assemblies and full electrolysis stacks are further discussed highlighting the challenges of making direct performance comparisons. To bridge this gap, relevant activity descriptors that connect catalyst properties with device-level performance under industrial conditions are introduced, and critically highlight the importance of conducting both operando characterization and techno-economic analysis. Finally, strategies to enhance both catalytic activity and durability, including electronic metal-support interactions, porosity engineering, and single-atom catalyst design, are highlighted. By integrating synthesis, testing, and mechanistic insights, this perspective offers a comprehensive roadmap to rationally design and implement next-generation catalysts tailored for scalable, durable, and efficient industrial green hydrogen production 
650 4 |a Journal Article 
650 4 |a electrocatalysts 
650 4 |a hydrogen evolution reaction 
650 4 |a oxygen evolution reaction 
650 4 |a proton exchange membrane water electrolyzers 
650 4 |a water electrolysis 
700 1 |a Meyer, Quentin  |e verfasserin  |4 aut 
700 1 |a Lu, Haochen  |e verfasserin  |4 aut 
700 1 |a Zhao, Chuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 04. Okt., Seite e12414  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2025  |g day:04  |g month:10  |g pages:e12414 
856 4 0 |u http://dx.doi.org/10.1002/adma.202512414  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 04  |c 10  |h e12414