Al Pinning Effect in Birnessite for High-Performance Ammonium-Ion Storage

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 02. Okt., Seite e12356
1. Verfasser: Cheng, Chao (VerfasserIn)
Weitere Verfasser: Bian, Shuyang, You, Yurong, Liu, Qiang, Yang, Zhuoying, Ye, Fei, Chen, Wenshu, Cheng, Jun, Chen, Xuecheng, Tang, Zilong, Zhu, Kongjun, Wu, Yuping, Hu, Linfeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Al‐pinning Birnessite Jahn–Teller distortion ammonium‐ion diffusion kinetics aqueous ammonium‐ion batteries
LEADER 01000naa a22002652c 4500
001 NLM393539229
003 DE-627
005 20251003232406.0
007 cr uuu---uuuuu
008 251003s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202512356  |2 doi 
028 5 2 |a pubmed25n1588.xml 
035 |a (DE-627)NLM393539229 
035 |a (NLM)41039773 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Chao  |e verfasserin  |4 aut 
245 1 3 |a Al Pinning Effect in Birnessite for High-Performance Ammonium-Ion Storage 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Layered birnessite has attracted considerable attention for its cathode potential in various aqueous energy storage devices owing to its two-electron transfer reaction (Mn2+/Mn4+), open diffusion channels, and tunable interlayer spacings. However, birnessite for reversible ammonium (NH4 +) ion storage generally suffers from irreversible structural collapse originated from Jahn-Teller (J-T) effect of Mn3+ and the intrinsic slow ionic diffusion kinetics. Herein, an Al pinning effect in birnessite is found to address these two issues simultaneously, which promoted enhanced structural stability and resulted in fast ionic diffusion kinetics for excellent high-rate capability. Strikingly, a robust cycling stability over 5, 000 cycles at 1.0 A g-1 is achieved in the optimal Na0.7Al0.1Mn0.9O2, which surpasses that of most previously reported ammonium-ion batteries. Density functional theory calculations revealed that the pinned [Al3+O6] octahedra not only decrease the Mn3+ content in birnessite, but also strengthen the covalency of Mn─O bonds to resist the collinear elongation/compression direction of the [Mn3+O6] octahedra. Furthermore, Al pinning in birnessite can increase the interlayer spacing due to the regulation of Mn3+─O/Mn4+─O bond length and decrease the diffusion barrier for NH4 + ion in the interlayer of birnessite. Thus, an accelerated NH4 + ion diffusion coefficient of 1.58 × 10-9 cm2 s-1 has been achieved, which is ≈5 times higher than of the pristine one and also higher than that in other cathode materials. The findings demonstrate that layered Na0.7Al0.1Mn0.9O2 is a very promising cathode candidate for NH4 + ion battery, and the Al pinning effect in birnessite can effectively suppress the J-T effect and enhance the NH4 + ion diffusion kinetics simultaneously 
650 4 |a Journal Article 
650 4 |a Al‐pinning 
650 4 |a Birnessite 
650 4 |a Jahn–Teller distortion 
650 4 |a ammonium‐ion diffusion kinetics 
650 4 |a aqueous ammonium‐ion batteries 
700 1 |a Bian, Shuyang  |e verfasserin  |4 aut 
700 1 |a You, Yurong  |e verfasserin  |4 aut 
700 1 |a Liu, Qiang  |e verfasserin  |4 aut 
700 1 |a Yang, Zhuoying  |e verfasserin  |4 aut 
700 1 |a Ye, Fei  |e verfasserin  |4 aut 
700 1 |a Chen, Wenshu  |e verfasserin  |4 aut 
700 1 |a Cheng, Jun  |e verfasserin  |4 aut 
700 1 |a Chen, Xuecheng  |e verfasserin  |4 aut 
700 1 |a Tang, Zilong  |e verfasserin  |4 aut 
700 1 |a Zhu, Kongjun  |e verfasserin  |4 aut 
700 1 |a Wu, Yuping  |e verfasserin  |4 aut 
700 1 |a Hu, Linfeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 02. Okt., Seite e12356  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2025  |g day:02  |g month:10  |g pages:e12356 
856 4 0 |u http://dx.doi.org/10.1002/adma.202512356  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 02  |c 10  |h e12356