HPformer : Low-Parameter Transformer With Temporal Dependency Hierarchical Propagation for Health Informatics

Transformers based on Self-Attention (SA) mechanism have demonstrated unrivaled superiority in numerous areas. Compared to RNN-based networks, Transformers can learn the temporal dependency representation of an entire sequence in parallel, while efficiently dealing with long-range dependencies. Howe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 28. Okt., Seite 10770-10786
1. Verfasser: Lee, Wu (VerfasserIn)
Weitere Verfasser: Shi, Yuliang, Yu, Han, Cheng, Lin, Wang, Xinjun, Yan, Zhongmin, Kong, Fanyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM393512576
003 DE-627
005 20251007231851.0
007 cr uuu---uuuuu
008 251003s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3593657  |2 doi 
028 5 2 |a pubmed25n1591.xml 
035 |a (DE-627)NLM393512576 
035 |a (NLM)40729723 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Wu  |e verfasserin  |4 aut 
245 1 0 |a HPformer  |b Low-Parameter Transformer With Temporal Dependency Hierarchical Propagation for Health Informatics 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.10.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Transformers based on Self-Attention (SA) mechanism have demonstrated unrivaled superiority in numerous areas. Compared to RNN-based networks, Transformers can learn the temporal dependency representation of an entire sequence in parallel, while efficiently dealing with long-range dependencies. However, the $\mathcal {O}(L^{2})$O(L2) ($L$L denotes the length of the sequence) computational complexity of the SA mechanism and the high memory usage make the construction cost of the Transformer-based model prohibitively expensive. To address these challenges, we propose a Transformer-like model, HPformer: Low-Parameter Transformer with Temporal Dependency Hierarchical Propagation. HPformer first chunks the sequence into $K$K ($K = \left\lceil \log {L} \right\rceil + 1$K=logL+1, $\left\lceil \cdot \right\rceil$· denotes ceiling operation) sequence segments, then leverages the hierarchical propagation mechanism with $\mathcal {O}(L)$O(L) computational complexity to learn the temporal dependencies between the segments and within the segments, and ultimately generates $K$K vectors as $Key$Key matrices. This reduces the complexity of the SA mechanism from $\mathcal {O}(L^{2})$O(L2) to $\mathcal {O}(L\log {L})$O(LlogL). In addition, we employ a strategy of sharing $Key$Key and $Value$Value matrices between layers to build the HPformer, thus reducing memory usage. Extensive experiments based on public health informatics benchmark and Long-Range Arena (LRA) benchmark have demonstrated that HPformer has advantages over Transformer-based models in terms of memory usage and efficiency 
650 4 |a Journal Article 
700 1 |a Shi, Yuliang  |e verfasserin  |4 aut 
700 1 |a Yu, Han  |e verfasserin  |4 aut 
700 1 |a Cheng, Lin  |e verfasserin  |4 aut 
700 1 |a Wang, Xinjun  |e verfasserin  |4 aut 
700 1 |a Yan, Zhongmin  |e verfasserin  |4 aut 
700 1 |a Kong, Fanyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 11 vom: 28. Okt., Seite 10770-10786  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:11  |g day:28  |g month:10  |g pages:10770-10786 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3593657  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 11  |b 28  |c 10  |h 10770-10786