MTMamba++ : Enhancing Multi-Task Dense Scene Understanding via Mamba-Based Decoders

Multi-task dense scene understanding, which trains a model for multiple dense prediction tasks, has a wide range of application scenarios. Capturing long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba++, a novel ar...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 28. Okt., Seite 10633-10645
Auteur principal: Lin, Baijiong (Auteur)
Autres auteurs: Jiang, Weisen, Chen, Pengguang, Liu, Shu, Chen, Ying-Cong
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article