Ins-HOI : Instance Aware Human-Object Interactions Recovery

Accurately modeling detailed interactions between human/hand and object is an appealing yet challenging task. Current multi-view capture systems are only capable of reconstructing multiple subjects into a single, unified mesh, which fails to model the states of each instance individually during inte...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 01. Okt., Seite 9655-9672
Auteur principal: Zhang, Jiajun (Auteur)
Autres auteurs: Zhang, Yuxiang, Zhang, Hongwen, Zhou, Xiao, Zhou, Boyao, Shao, Ruizhi, Hu, Zonghai, Liu, Yebin
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM393512304
003 DE-627
005 20251007231846.0
007 cr uuu---uuuuu
008 251003s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3588268  |2 doi 
028 5 2 |a pubmed25n1591.xml 
035 |a (DE-627)NLM393512304 
035 |a (NLM)40644097 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Jiajun  |e verfasserin  |4 aut 
245 1 0 |a Ins-HOI  |b Instance Aware Human-Object Interactions Recovery 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.10.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Accurately modeling detailed interactions between human/hand and object is an appealing yet challenging task. Current multi-view capture systems are only capable of reconstructing multiple subjects into a single, unified mesh, which fails to model the states of each instance individually during interactions. To address this, previous methods use template-based representations to track human/hand and object. However, the quality of the reconstructions is limited by the descriptive capabilities of the templates so these methods inherently struggle with geometric details, pressing deformations and invisible contact surfaces. In this work, we propose an end-to-end Instance-aware Human-Object Interactions recovery (Ins-HOI) framework by introducing an instance-level occupancy field representation. However, the real-captured data is presented as a holistic mesh, unable to provide instance-level supervision. To address this, we further propose a complementary training strategy that leverages synthetic data to introduce instance-level shape priors, enabling the disentanglement of occupancy fields for different instances. Specifically, synthetic data, created by randomly combining individual scans of humans/hands and objects, guides the network to learn a coarse prior of instances. Meanwhile, real-captured data helps in learning the overall geometry and restricting interpenetration in contact areas. As demonstrated in experiments, our method Ins-HOI supports instance-level reconstruction and provides reasonable and realistic invisible contact surfaces even in cases of extremely close interaction. To facilitate research on this task, we collect a large-scale, high-fidelity 3D scan dataset, including 5.2 k high-quality scans with real-world human-chair and hand-object interactions. The code and data will be public for research purposes 
650 4 |a Journal Article 
700 1 |a Zhang, Yuxiang  |e verfasserin  |4 aut 
700 1 |a Zhang, Hongwen  |e verfasserin  |4 aut 
700 1 |a Zhou, Xiao  |e verfasserin  |4 aut 
700 1 |a Zhou, Boyao  |e verfasserin  |4 aut 
700 1 |a Shao, Ruizhi  |e verfasserin  |4 aut 
700 1 |a Hu, Zonghai  |e verfasserin  |4 aut 
700 1 |a Liu, Yebin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 11 vom: 01. Okt., Seite 9655-9672  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:11  |g day:01  |g month:10  |g pages:9655-9672 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3588268  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 11  |b 01  |c 10  |h 9655-9672