Unifying Graph Contrastive Learning via Graph Message Augmentation

Graph contrastive learning is usually performed by first conducting Graph Data Augmentation (GDA) and then employing a contrastive learning pipeline to train GNNs. As we know that GDA is an important issue for graph contrastive learning. Various GDAs have been developed recently which mainly involve...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 11 vom: 01. Okt., Seite 9563-9579
Auteur principal: Zhang, Ziyan (Auteur)
Autres auteurs: Jiang, Bo, Tang, Jin, Luo, Bin
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
Description
Résumé:Graph contrastive learning is usually performed by first conducting Graph Data Augmentation (GDA) and then employing a contrastive learning pipeline to train GNNs. As we know that GDA is an important issue for graph contrastive learning. Various GDAs have been developed recently which mainly involve dropping or perturbing edges, nodes, node attributes and edge attributes. However, to our knowledge, it still lacks a universal and effective augmentor that is suitable for different types of graph data. To address this issue, in this paper, we first introduce the graph message representation of graph data. Based on it, we then propose a novel Graph Message Augmentation (GMA), a universal scheme for reformulating many existing GDAs. The proposed unified GMA not only gives a new perspective to understand many existing GDAs but also provides a universal and more effective graph data augmentation for graph self-supervised learning tasks. Moreover, GMA introduces an easy way to implement the mixup augmentor which is natural for images but usually challengeable for graphs. Based on the proposed GMA, we then propose a unified graph contrastive learning, termed Graph Message Contrastive Learning (GMCL), that employs attribution-guided universal GMA for graph contrastive learning. Experiments on many graph learning tasks demonstrate the effectiveness and benefits of the proposed GMA and GMCL approaches
Description:Date Revised 06.10.2025
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2025.3586651