Action Quality Assessment via Hierarchical Pose-Guided Multi-Stage Contrastive Regression

Action Quality Assessment (AQA), which aims at the automatic and fair evaluation of athletic performance, has gained increasing attention in recent years. However, athletes are often in rapid movement and the corresponding visual appearance variances are subtle, making it challenging to capture fine...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 13., Seite 6461-6474
Auteur principal: Qi, Mengshi (Auteur)
Autres auteurs: Ye, Hao, Peng, Jiaxuan, Ma, Huadong
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM393461882
003 DE-627
005 20251015232134.0
007 cr uuu---uuuuu
008 251002s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3613952  |2 doi 
028 5 2 |a pubmed25n1598.xml 
035 |a (DE-627)NLM393461882 
035 |a (NLM)41032565 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qi, Mengshi  |e verfasserin  |4 aut 
245 1 0 |a Action Quality Assessment via Hierarchical Pose-Guided Multi-Stage Contrastive Regression 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.10.2025 
500 |a Date Revised 13.10.2025 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Action Quality Assessment (AQA), which aims at the automatic and fair evaluation of athletic performance, has gained increasing attention in recent years. However, athletes are often in rapid movement and the corresponding visual appearance variances are subtle, making it challenging to capture fine-grained pose differences and leading to poor estimation performance. Furthermore, most common AQA tasks, such as diving in sports, are usually divided into multiple sub-actions, each of which contains different durations. However, existing methods focus on segmenting the video into fixed frames, which disrupts the temporal continuity of sub-actions resulting in unavoidable prediction errors. To address these challenges, we propose a novel action quality assessment method through hierarchically pose-guided multi-stage contrastive regression. Firstly, we introduce a multi-scale dynamic visual-skeleton encoder to capture fine-grained spatio-temporal visual and skeletal features. Compared to mask or auxiliary visual features, skeletal features provide a more accurate representation during athletic movements. Then, a procedure segmentation network is introduced to separate different sub-actions and obtain segmented features. Afterwards, the segmented visual and skeletal features are both fed into a multi-modal fusion module as physics structural priors, to guide the model in learning refined activity similarities and variances. Finally, a multi-stage contrastive learning regression approach is employed to learn discriminative representations and output prediction results. In addition, we introduce a newly-annotated FineDiving-Pose Dataset to improve the current low-quality human pose labels. In experiments, the results on FineDiving and MTL-AQA datasets demonstrate the effectiveness and superiority of our proposed approach. Our source code and dataset are available at https://github.com/Lumos0507/HP-MCoRe 
650 4 |a Journal Article 
700 1 |a Ye, Hao  |e verfasserin  |4 aut 
700 1 |a Peng, Jiaxuan  |e verfasserin  |4 aut 
700 1 |a Ma, Huadong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 13., Seite 6461-6474  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:13  |g pages:6461-6474 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3613952  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 13  |h 6461-6474