|
|
|
|
| LEADER |
01000naa a22002652c 4500 |
| 001 |
NLM393290689 |
| 003 |
DE-627 |
| 005 |
20250930233311.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
250930s2025 xx |||||o 00| ||eng c |
| 024 |
7 |
|
|a 10.1002/adma.202510095
|2 doi
|
| 028 |
5 |
2 |
|a pubmed25n1584.xml
|
| 035 |
|
|
|a (DE-627)NLM393290689
|
| 035 |
|
|
|a (NLM)41017253
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Shu, Yue
|e verfasserin
|4 aut
|
| 245 |
1 |
0 |
|a 2D Chitin Sub-Nanosheets with Extreme Ion Transport for Nanofluidic Sensing
|
| 264 |
|
1 |
|c 2025
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
| 500 |
|
|
|a Date Revised 29.09.2025
|
| 500 |
|
|
|a published: Print-Electronic
|
| 500 |
|
|
|a Citation Status Publisher
|
| 520 |
|
|
|a © 2025 Wiley‐VCH GmbH.
|
| 520 |
|
|
|a Nanofluidic membranes possess unique ion-selective transport properties, offering considerable potential for energy harvesting and sensing applications. However, the scarcity of anion-selective membranes has significantly hindered progress in these fields. Herein, the energy disparities among chitin crystalline planes are exploited to selectively cleave the low-energy (020) plane, facilitating the directional exfoliation of Bouligand-structured chitin into 2D sub-nanosheets (CSs) with an average thickness of 0.7 nm and lateral dimensions of 50-100 nm. Simulations and experiments demonstrate that a reduction in thickness significantly enhances both the ion transport flux (1.53 times) and selectivity (1.14 times), which in turn boosts the power output density to 12.95 W m-2 under a 50-fold salinity gradient surpassing all-existing biomass-based nanofluidic membranes (max. 2.87 W m-2) and the commercial benchmark (5.0 W m-2). Furthermore, the membranes' extreme ion management capabilities facilitate real-time nanofluidic sensing, as demonstrated in jellyfish cultivation monitoring. This study presents a cost-effective strategy for developing high-performance, positively-charged nanofluidic membranes with exceptional energy harvesting and sensing capabilities, laying the foundation for advanced energy and sensing technologies
|
| 650 |
|
4 |
|a Journal Article
|
| 650 |
|
4 |
|a chitin
|
| 650 |
|
4 |
|a exfoliation
|
| 650 |
|
4 |
|a ion regulation
|
| 650 |
|
4 |
|a nanofluidic sensing
|
| 650 |
|
4 |
|a sub‐nanosheets
|
| 700 |
1 |
|
|a Yuan, Kaiyu
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Xiang, Zhongrun
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Chen, Pan
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Wang, Huiqing
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Ye, Dongdong
|e verfasserin
|4 aut
|
| 773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2025) vom: 28. Sept., Seite e10095
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
| 773 |
1 |
8 |
|g year:2025
|g day:28
|g month:09
|g pages:e10095
|
| 856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202510095
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_NLM
|
| 912 |
|
|
|a GBV_ILN_350
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|j 2025
|b 28
|c 09
|h e10095
|