2D Chitin Sub-Nanosheets with Extreme Ion Transport for Nanofluidic Sensing

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2025) vom: 28. Sept., Seite e10095
1. Verfasser: Shu, Yue (VerfasserIn)
Weitere Verfasser: Yuan, Kaiyu, Xiang, Zhongrun, Chen, Pan, Wang, Huiqing, Ye, Dongdong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article chitin exfoliation ion regulation nanofluidic sensing sub‐nanosheets
LEADER 01000naa a22002652c 4500
001 NLM393290689
003 DE-627
005 20250930233311.0
007 cr uuu---uuuuu
008 250930s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202510095  |2 doi 
028 5 2 |a pubmed25n1584.xml 
035 |a (DE-627)NLM393290689 
035 |a (NLM)41017253 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shu, Yue  |e verfasserin  |4 aut 
245 1 0 |a 2D Chitin Sub-Nanosheets with Extreme Ion Transport for Nanofluidic Sensing 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Nanofluidic membranes possess unique ion-selective transport properties, offering considerable potential for energy harvesting and sensing applications. However, the scarcity of anion-selective membranes has significantly hindered progress in these fields. Herein, the energy disparities among chitin crystalline planes are exploited to selectively cleave the low-energy (020) plane, facilitating the directional exfoliation of Bouligand-structured chitin into 2D sub-nanosheets (CSs) with an average thickness of 0.7 nm and lateral dimensions of 50-100 nm. Simulations and experiments demonstrate that a reduction in thickness significantly enhances both the ion transport flux (1.53 times) and selectivity (1.14 times), which in turn boosts the power output density to 12.95 W m-2 under a 50-fold salinity gradient surpassing all-existing biomass-based nanofluidic membranes (max. 2.87 W m-2) and the commercial benchmark (5.0 W m-2). Furthermore, the membranes' extreme ion management capabilities facilitate real-time nanofluidic sensing, as demonstrated in jellyfish cultivation monitoring. This study presents a cost-effective strategy for developing high-performance, positively-charged nanofluidic membranes with exceptional energy harvesting and sensing capabilities, laying the foundation for advanced energy and sensing technologies 
650 4 |a Journal Article 
650 4 |a chitin 
650 4 |a exfoliation 
650 4 |a ion regulation 
650 4 |a nanofluidic sensing 
650 4 |a sub‐nanosheets 
700 1 |a Yuan, Kaiyu  |e verfasserin  |4 aut 
700 1 |a Xiang, Zhongrun  |e verfasserin  |4 aut 
700 1 |a Chen, Pan  |e verfasserin  |4 aut 
700 1 |a Wang, Huiqing  |e verfasserin  |4 aut 
700 1 |a Ye, Dongdong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2025) vom: 28. Sept., Seite e10095  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2025  |g day:28  |g month:09  |g pages:e10095 
856 4 0 |u http://dx.doi.org/10.1002/adma.202510095  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 28  |c 09  |h e10095