|
|
|
|
LEADER |
01000naa a22002652c 4500 |
001 |
NLM393249557 |
003 |
DE-627 |
005 |
20250927232938.0 |
007 |
cr uuu---uuuuu |
008 |
250927s2025 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202510635
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1582.xml
|
035 |
|
|
|a (DE-627)NLM393249557
|
035 |
|
|
|a (NLM)41013963
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kim, Sungho
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Spatiotemporal Reservoir Computing with a Reconfigurable Multifunctional Memristor Array
|
264 |
|
1 |
|c 2025
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.09.2025
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
|
520 |
|
|
|a The existing physical implementations of reservoir computing are constrained mainly by time-delay architectures that lack capabilities for spatial data processing. This study presents a multifunctional memristor-based reservoir computing system, the memristive echo state network (MESN), which enables spatiotemporal computation within a single device crossbar array. Utilizing a reconfigurable Ta/HfO2/RuO2 memristor, three distinct switching modes are realized: stochastic for input masking, bistable for sigmoidal activation, and analog for precise readout. A full in-memory implementation is experimentally demonstrated using a one-transistor-one-resistor crossbar array integrated with indium oxide thin-film transistors. Spatial inference is validated through cellular automata, confirming reliable hardware operation. High-level simulations based on the hardware results demonstrate the performance of the proposed MESN, achieving high accuracy in predicting the Lorenz attractor and classifying attention-deficit/hyperactivity disorder. The system also predicted the Kuramoto-Sivashinsky equation, representing the first memristor-based reservoir to model complex spatiotemporal partial differential equations. These results highlight the potential of multifunctional memristor arrays for scalable in-memory spatiotemporal computing
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a in‐memory computing
|
650 |
|
4 |
|a memristive crossbar array
|
650 |
|
4 |
|a multifunctional memristor
|
650 |
|
4 |
|a reservoir computing
|
650 |
|
4 |
|a spatiotemporal reservoir
|
700 |
1 |
|
|a Shin, Dong Hoon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Choi, Wonho
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheong, Sunwoo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shim, Sung Keun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Soo Hyung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Janguk
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jang, Yoon Ho
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Son, Kunhee
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ghenzi, Néstor
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hwang, Cheol Seong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2025) vom: 26. Sept., Seite e10635
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g year:2025
|g day:26
|g month:09
|g pages:e10635
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202510635
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2025
|b 26
|c 09
|h e10635
|