Sulfur-Doped IrO2 Enable Pathway Switch to Lattice Oxygen Mechanism with Enhanced Stability for Low Iridium PEM Water Electrolysis

© 2025 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 38 vom: 01. Sept., Seite e2507560
Auteur principal: Yang, Chenlu (Auteur)
Autres auteurs: Zhu, Yanping, Zhang, Fengru, Yao, Longping, Chen, Yihe, Lu, Tongchan, Li, Qixuan, Li, Jun, Wang, Guoliang, Cheng, Qingqing, Yang, Hui
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article PEM water electrolysis iridium lattice oxygen mechanism oxygen evolution reaction oxygen nonbonding state
LEADER 01000naa a22002652c 4500
001 NLM393045072
003 DE-627
005 20250926232057.0
007 cr uuu---uuuuu
008 250926s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202507560  |2 doi 
028 5 2 |a pubmed25n1581.xml 
035 |a (DE-627)NLM393045072 
035 |a (NLM)40545917 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Chenlu  |e verfasserin  |4 aut 
245 1 0 |a Sulfur-Doped IrO2 Enable Pathway Switch to Lattice Oxygen Mechanism with Enhanced Stability for Low Iridium PEM Water Electrolysis 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Achieving high activity and stability while minimizing Ir usage poses a significant challenge in the industrialization of proton exchange membrane water electrolysis (PEMWE). Herein we report a sulfur-doping strategy that enables the OER pathway on IrO2 nanoparticles (IrO2/S) to switch from conventional adsorption evolution mechanism (AEM) to lattice oxygen mechanism (LOM) while maintaining Ir─O bond stability, thus achieving a significant enhancement in both intrinsic activity and durability. Advanced spectroscopies and theoretical calculations reveal that the Ir─S coordination motif within the lattice increases the electron density of the Ir center and enhances Ir─O covalency, thus triggering the LOM pathway. Importantly, the lattice distortion and unsaturated Ir─O coordination within the IrO2/S generate the oxygen nonbonding state that acts as an electron sacrificial agent to preserve Ir─O bonds upon the LOM-dominated OER process. As a result, PEMWE integrated with such IrO2/S electrocatalyst delivers a low cell voltage (1.769 V at 2.0 A cm-2) and long-term stability (16.6 µV h⁻¹ over 1000 h1.0 A cm⁻2) while dramatically reducing Ir usage from 1.0 to 0.3 mg cm-2. This work establishes S doping as a viable strategy to trigger LOM and stabilize lattice oxygen redox in Ir-based catalysts, opening a new avenue for low-Ir PEMWEs 
650 4 |a Journal Article 
650 4 |a PEM water electrolysis 
650 4 |a iridium 
650 4 |a lattice oxygen mechanism 
650 4 |a oxygen evolution reaction 
650 4 |a oxygen nonbonding state 
700 1 |a Zhu, Yanping  |e verfasserin  |4 aut 
700 1 |a Zhang, Fengru  |e verfasserin  |4 aut 
700 1 |a Yao, Longping  |e verfasserin  |4 aut 
700 1 |a Chen, Yihe  |e verfasserin  |4 aut 
700 1 |a Lu, Tongchan  |e verfasserin  |4 aut 
700 1 |a Li, Qixuan  |e verfasserin  |4 aut 
700 1 |a Li, Jun  |e verfasserin  |4 aut 
700 1 |a Wang, Guoliang  |e verfasserin  |4 aut 
700 1 |a Cheng, Qingqing  |e verfasserin  |4 aut 
700 1 |a Yang, Hui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 38 vom: 01. Sept., Seite e2507560  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:38  |g day:01  |g month:09  |g pages:e2507560 
856 4 0 |u http://dx.doi.org/10.1002/adma.202507560  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 38  |b 01  |c 09  |h e2507560