Streaming View Classification With Noisy Label

In many image processing tasks, e.g., 3D reconstruction of dynamic scenes, different types of descriptions, a.k.a., views, of an object are emerging in a streaming way. Streaming view learning provides an effective solution to this dynamic view problem. In this paradigm, existing streaming view lear...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 34(2025) vom: 24., Seite 5750-5760
1. Verfasser: Ouyang, Xiao (VerfasserIn)
Weitere Verfasser: Fan, Ruidong, Tao, Hong, Hou, Chenping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM392944987
003 DE-627
005 20250925232330.0
007 cr uuu---uuuuu
008 250923s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2025.3607610  |2 doi 
028 5 2 |a pubmed25n1579.xml 
035 |a (DE-627)NLM392944987 
035 |a (NLM)40956707 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ouyang, Xiao  |e verfasserin  |4 aut 
245 1 0 |a Streaming View Classification With Noisy Label 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.09.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In many image processing tasks, e.g., 3D reconstruction of dynamic scenes, different types of descriptions, a.k.a., views, of an object are emerging in a streaming way. Streaming view learning provides an effective solution to this dynamic view problem. In this paradigm, existing streaming view learning methods typically assume that all labels are accurate. However, in many real-world applications, the initial views may be not good enough for characterizing, leading to noisy labels that degrade classification performance. How to learn a model for simultaneous view evolving and label ambiguity is critical yet unexplored. In this paper, we propose a novel method called Streaming View Classification with Noisy Label (SVCNL). We calibrate noisy labels according to the emerging of new views, thereby reflecting the dynamic changes in the data more accurately. Leveraging the sequential and non-revisitable nature of views, the method tunes existing models to inherit information from previous stages by utilizing current-stage data. It reconstructs noisy labels through a label transition matrix and establishes relationships between true labels and samples using a graph embedding strategy, progressively correcting noisy labels. Together with the theoretical analyses about generalization bounds, extensive experiments demonstrate the effectiveness of the proposed approach 
650 4 |a Journal Article 
700 1 |a Fan, Ruidong  |e verfasserin  |4 aut 
700 1 |a Tao, Hong  |e verfasserin  |4 aut 
700 1 |a Hou, Chenping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 34(2025) vom: 24., Seite 5750-5760  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:34  |g year:2025  |g day:24  |g pages:5750-5760 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2025.3607610  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2025  |b 24  |h 5750-5760