Dynamic Importance Monte Carlo SPH Vortical Flows With Lagrangian Samples

We present a Lagrangian dynamic importance Monte Carlo method without non-trivial random walks for solving the Velocity-Vorticity Poisson Equation (VVPE) in Smoothed Particle Hydrodynamics (SPH) for vortical flows. Key to our approach is the use of the Kinematic Vorticity Number (KVN) to detect vort...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - PP(2025) vom: 19. Sept.
Auteur principal: Ye, Xingyu (Auteur)
Autres auteurs: Wang, Xiaokun, Xu, Yanrui, Telea, Alexandru C, Kosinka, Jiri, You, Lihua, Zhang, Jian Jun, Chang, Jian
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM392817411
003 DE-627
005 20250920233141.0
007 cr uuu---uuuuu
008 250920s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2025.3612190  |2 doi 
028 5 2 |a pubmed25n1575.xml 
035 |a (DE-627)NLM392817411 
035 |a (NLM)40971285 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ye, Xingyu  |e verfasserin  |4 aut 
245 1 0 |a Dynamic Importance Monte Carlo SPH Vortical Flows With Lagrangian Samples 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a We present a Lagrangian dynamic importance Monte Carlo method without non-trivial random walks for solving the Velocity-Vorticity Poisson Equation (VVPE) in Smoothed Particle Hydrodynamics (SPH) for vortical flows. Key to our approach is the use of the Kinematic Vorticity Number (KVN) to detect vortex cores and to compute the KVN-based importance of each particle when solving the VVPE. We use Adaptive Kernel Density Estimation (AKDE) to extract a probability density distribution from the KVN for the the Monte Carlo calculations. Even though the distribution of the KVN can be non-trivial, AKDE yields a smooth and normalized result which we dynamically update at each time step. As we sample actual particles directly, the Lagrangian attributes of particle samples ensure that the continuously evolved KVN-based importance, modeled by the probability density distribution extracted from the KVN by AKDE, can be closely followed. Our approach enables effective vortical flow simulations with significantly reduced computational overhead and comparable quality to the classic Biot-Savart law that in contrast requires expensive global particle querying 
650 4 |a Journal Article 
700 1 |a Wang, Xiaokun  |e verfasserin  |4 aut 
700 1 |a Xu, Yanrui  |e verfasserin  |4 aut 
700 1 |a Telea, Alexandru C  |e verfasserin  |4 aut 
700 1 |a Kosinka, Jiri  |e verfasserin  |4 aut 
700 1 |a You, Lihua  |e verfasserin  |4 aut 
700 1 |a Zhang, Jian Jun  |e verfasserin  |4 aut 
700 1 |a Chang, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2025) vom: 19. Sept.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:19  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2025.3612190  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 19  |c 09