|  |  |  |  | 
| LEADER | 01000caa a22002652c 4500 | 
| 001 | NLM392755807 | 
| 003 | DE-627 | 
| 005 | 20250930234027.0 | 
| 007 | cr uuu---uuuuu | 
| 008 | 250920s2025    xx |||||o     00| ||eng c | 
| 024 | 7 |  | |a 10.1109/TIP.2025.3609185 
  |2 doi | 
| 028 | 5 | 2 | |a pubmed25n1585.xml | 
| 035 |  |  | |a (DE-627)NLM392755807 | 
| 035 |  |  | |a (NLM)40966154 | 
| 040 |  |  | |a DE-627 
  |b ger 
  |c DE-627 
  |e rakwb | 
| 041 |  |  | |a eng | 
| 100 | 1 |  | |a Huang, Sheng 
  |e verfasserin 
  |4 aut | 
| 245 | 1 | 0 | |a Dual-View Alignment Learning With Hierarchical-Prompt for Class-Imbalance Multi-Label Image Classification | 
| 264 |  | 1 | |c 2025 | 
| 336 |  |  | |a Text 
  |b txt 
  |2 rdacontent | 
| 337 |  |  | |a ƒaComputermedien 
  |b c 
  |2 rdamedia | 
| 338 |  |  | |a ƒa Online-Ressource 
  |b cr 
  |2 rdacarrier | 
| 500 |  |  | |a Date Revised 29.09.2025 | 
| 500 |  |  | |a published: Print | 
| 500 |  |  | |a Citation Status PubMed-not-MEDLINE | 
| 520 |  |  | |a Real-world datasets often exhibit class imbalance across multiple categories, manifesting as long-tailed distributions and few-shot scenarios. This is especially challenging in Class-Imbalanced Multi-Label Image Classification (CI-MLIC) tasks, where data imbalance and multi-object recognition present significant obstacles. To address these challenges, we propose a novel method termed Dual-View Alignment Learning with Hierarchical Prompt (HP-DVAL), which leverages multi-modal knowledge from vision-language pretrained (VLP) models to mitigate the class-imbalance problem in multi-label settings. Specifically, HP-DVAL employs dual-view alignment learning to transfer the powerful feature representation capabilities from VLP models by extracting complementary features for accurate image-text alignment. To better adapt VLP models for CI-MLIC tasks, we introduce a hierarchical prompt-tuning strategy that utilizes global and local prompts to learn task-specific and context-related prior knowledge. Additionally, we design a semantic consistency loss during prompt tuning to prevent learned prompts from deviating from general knowledge embedded in VLP models. The effectiveness of our approach is validated on two CI-MLIC benchmarks: MS-COCO and VOC2007. Extensive experimental results demonstrate the superiority of our method over SOTA approaches, achieving mAP improvements of 10.0% and 5.2% on the long-tailed multi-label image classification task, and 6.8% and 2.9% on the multi-label few-shot image classification task | 
| 650 |  | 4 | |a Journal Article | 
| 700 | 1 |  | |a Yan, Jiexuan 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Liu, Beiyan 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Liu, Bo 
  |e verfasserin 
  |4 aut | 
| 700 | 1 |  | |a Hong, Richang 
  |e verfasserin 
  |4 aut | 
| 773 | 0 | 8 | |i Enthalten in 
  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 
  |d 1992 
  |g 34(2025) vom: 30., Seite 5989-6001 
  |w (DE-627)NLM09821456X 
  |x 1941-0042 
  |7 nnas | 
| 773 | 1 | 8 | |g volume:34 
  |g year:2025 
  |g day:30 
  |g pages:5989-6001 | 
| 856 | 4 | 0 | |u http://dx.doi.org/10.1109/TIP.2025.3609185 
  |3 Volltext | 
| 912 |  |  | |a GBV_USEFLAG_A | 
| 912 |  |  | |a SYSFLAG_A | 
| 912 |  |  | |a GBV_NLM | 
| 912 |  |  | |a GBV_ILN_350 | 
| 951 |  |  | |a AR | 
| 952 |  |  | |d 34 
  |j 2025 
  |b 30 
  |h 5989-6001 |