Real-Time Tracking of Nanoscale Morphology and Strain Evolution in Bi2WO6 via Operando Coherent X-Ray Imaging

© 2025 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 37 vom: 23. Sept., Seite e2504445
1. Verfasser: Anderson, Jackson (VerfasserIn)
Weitere Verfasser: Nazirkar, Nimish P, Ndiaye, Atoumane, Barringer, Julie, Tran, Viet, Bassène, Pascal, Cha, Wonsuk, Jiang, Jie, Shi, Jian, Harder, Ross, N'Gom, Moussa, Fohtung, Edwin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Bragg coherent imaging photo‐catalysis strain and defects
LEADER 01000naa a22002652c 4500
001 NLM392736519
003 DE-627
005 20250920232033.0
007 cr uuu---uuuuu
008 250920s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202504445  |2 doi 
028 5 2 |a pubmed25n1574.xml 
035 |a (DE-627)NLM392736519 
035 |a (NLM)40552552 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Anderson, Jackson  |e verfasserin  |4 aut 
245 1 0 |a Real-Time Tracking of Nanoscale Morphology and Strain Evolution in Bi2WO6 via Operando Coherent X-Ray Imaging 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2025 Wiley‐VCH GmbH. 
520 |a Nanostructuring photocatalytic and catalytic materials substantially increases the surface-to-volume ratio, thereby exposing a greater number of active sites essential for enhanced catalytic efficiency. However, optimizing these efficiencies requires the non-destructive, operando interrogation of individual nanocrystals under realistic catalytic conditions-a capability that has long remained elusive. Here, this challenge is addressed by reporting three-dimensional imaging of defects, crystal morphology, and strain dynamics in individual Bi2WO6 (BWO) nanoflakes using Bragg coherent diffractive imaging (BCDI) under operando temperature, gas, and light-driven conditions. It is demonstrated that maintaining a constant temperature of 40°C thermally activates charge carriers, likely enhancing their mobility and reducing recombination rates. Furthermore, an Argon (Ar) gas flow stabilizes the reaction environment, while a mixed Hydrogen-Nitrogen (H2 + N2) flow induces a hydrogen-triggered semiconducting-to-metallic (SM) electronic phase transition accompanied by a structural transformation, as supported by density functional theory (DFT) calculations. Both DFT and BCDI analyses reveal that during the SM phase transition, a new structural phase nucleates near defects and propagates inhomogeneously. Notably, the onset of nanoscale cracking is observed, driven by localized strain accumulation and environmental cycling, which increases surface area and potentially introduces new reactive sites. These findings illustrate that combining advanced nanostructuring with operando imaging techniques can provide critical insights into the local structural features that govern photocatalytic performance, paving the way for the rational design of next-generation photocatalytic materials 
650 4 |a Journal Article 
650 4 |a Bragg coherent imaging 
650 4 |a photo‐catalysis 
650 4 |a strain and defects 
700 1 |a Nazirkar, Nimish P  |e verfasserin  |4 aut 
700 1 |a Ndiaye, Atoumane  |e verfasserin  |4 aut 
700 1 |a Barringer, Julie  |e verfasserin  |4 aut 
700 1 |a Tran, Viet  |e verfasserin  |4 aut 
700 1 |a Bassène, Pascal  |e verfasserin  |4 aut 
700 1 |a Cha, Wonsuk  |e verfasserin  |4 aut 
700 1 |a Jiang, Jie  |e verfasserin  |4 aut 
700 1 |a Shi, Jian  |e verfasserin  |4 aut 
700 1 |a Harder, Ross  |e verfasserin  |4 aut 
700 1 |a N'Gom, Moussa  |e verfasserin  |4 aut 
700 1 |a Fohtung, Edwin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 37 vom: 23. Sept., Seite e2504445  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:37  |g day:23  |g month:09  |g pages:e2504445 
856 4 0 |u http://dx.doi.org/10.1002/adma.202504445  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 37  |b 23  |c 09  |h e2504445