|
|
|
|
LEADER |
01000naa a22002652c 4500 |
001 |
NLM392722402 |
003 |
DE-627 |
005 |
20250918232649.0 |
007 |
cr uuu---uuuuu |
008 |
250918s2025 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202509807
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1573.xml
|
035 |
|
|
|a (DE-627)NLM392722402
|
035 |
|
|
|a (NLM)40964886
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Xingjun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Achieving Enhanced Reversible Anionic Redox Activity in Li-Rich Layered Oxides via LiCoMn5 Superstructure Design
|
264 |
|
1 |
|c 2025
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 18.09.2025
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2025 Wiley‐VCH GmbH.
|
520 |
|
|
|a The Li-rich layered oxide (LRLO) cathode drives the development of low-cost and high-energy-density Li-based batteries, owing to its ultrahigh capacity contributed from cationic redox and extra oxygen anionic redox reaction (ARR). However, unlocking higher ARR activity without compromising reversibility remains challenging. Herein, a series of LRLO samples with varying Ni-Co-Mn compositions is designed to synergistically enhance ARR activity and reversibility. On the one hand, the absence of Co results in suppressed ARR activity for traditional Li1.2Mn0.6Ni0.2O2 with LiMn6 superstructures, causing inferior O-related capacity and cycling stability. On the other hand, excessive Co/Mn atomic exchange within the honeycomb structure by forming LiConMn6-n (n ≥ 2) units activates more O-redox capacity for another typical Li1.2Ni0.13Mn0.54Co0.13O2, but induces oxygen instability and low ARR reversibility. Notably, moderate incorporation of Co into LiMn6 mainly produces LiCoMn5 (n = 1) superstructures in Li1.2(Mn0.65Ni0.25Co0.1)0.8O2 (LRLO-Co10) with Li3-O-LiCoMn coordination. This unique structure enables highly reversible ARR activity. Consequently, LRLO-Co10 exhibits a reversible capacity exceeding 300 mAh g-1 at 0.1C and retains 95.7% of the initial capacity (271.1 mAh g-1) after 300 cycles at 1C. These findings provide a valuable insight into compositional optimization and a strategy for achieving high-capacity Li-rich cathodes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Li‐rich layered oxides
|
650 |
|
4 |
|a anionic redox reversibility
|
650 |
|
4 |
|a lattice oxygen stability
|
650 |
|
4 |
|a superstructure modulation
|
700 |
1 |
|
|a Liu, Fangyan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Kaining
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xiaolin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Zhengbo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xingyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Zhiyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Yuzhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wen, Yali
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Min
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Guanhua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ren, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Qi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2025) vom: 18. Sept., Seite e09807
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g year:2025
|g day:18
|g month:09
|g pages:e09807
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202509807
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2025
|b 18
|c 09
|h e09807
|