|
|
|
|
| LEADER |
01000caa a22002652c 4500 |
| 001 |
NLM392709090 |
| 003 |
DE-627 |
| 005 |
20250926232317.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
250918s2025 xx |||||o 00| ||eng c |
| 024 |
7 |
|
|a 10.1007/s10462-025-11109-w
|2 doi
|
| 028 |
5 |
2 |
|a pubmed25n1581.xml
|
| 035 |
|
|
|a (DE-627)NLM392709090
|
| 035 |
|
|
|a (NLM)40963558
|
| 035 |
|
|
|a (PII)103
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Yinghui, Wang
|e verfasserin
|4 aut
|
| 245 |
1 |
0 |
|a Artificial intelligence in four-dimensional imaging for motion management in radiation therapy
|
| 264 |
|
1 |
|c 2025
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
| 500 |
|
|
|a Date Revised 26.09.2025
|
| 500 |
|
|
|a published: Print-Electronic
|
| 500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
| 520 |
|
|
|a Four-dimensional imaging (4D-imaging) plays a critical role in achieving precise motion management in radiation therapy. However, challenges remain in 4D-imaging such as a long imaging time, suboptimal image quality, and inaccurate motion estimation. With the tremendous success of artificial intelligence (AI) in the image domain, particularly deep learning, there is great potential in overcoming these challenges and improving the accuracy and efficiency of 4D-imaging without the need for hardware modifications. In this review, we provide a comprehensive overview of how these AI-based methods could drive the evolution of 4D-imaging for motion management. We discuss the inherent issues associated with multiple 4D modalities and explore the current research progress of AI in 4D-imaging. Furthermore, we delve into the unresolved challenges and limitations in 4D-imaging and provide insights into the future direction of this field
|
| 650 |
|
4 |
|a Journal Article
|
| 650 |
|
4 |
|a 4D-imaging
|
| 650 |
|
4 |
|a Artificial intelligence
|
| 650 |
|
4 |
|a Radiation therapy motion management
|
| 700 |
1 |
|
|a Haonan, Xiao
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Jing, Wang
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Lu, Wang
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Wen, Li
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Zhuoran, Jiang
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Ge, Ren
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Shaohua, Zhi
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Josh, Qian
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Jianrong, Dai
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Kuo, Men
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Lei, Ren
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Xiaofeng, Yang
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Tian, Li
|e verfasserin
|4 aut
|
| 700 |
1 |
|
|a Jing, Cai
|e verfasserin
|4 aut
|
| 773 |
0 |
8 |
|i Enthalten in
|t Artificial intelligence review
|d 1998
|g 58(2025), 4 vom: 09. Apr.
|w (DE-627)NLM098184490
|x 0269-2821
|7 nnas
|
| 773 |
1 |
8 |
|g volume:58
|g year:2025
|g number:4
|g day:09
|g month:04
|
| 856 |
4 |
0 |
|u http://dx.doi.org/10.1007/s10462-025-11109-w
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_NLM
|
| 912 |
|
|
|a GBV_ILN_350
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|d 58
|j 2025
|e 4
|b 09
|c 04
|