Enhancing sorting efficiency in cluttered construction and demolition waste streams via boundary-guided grasp detection

Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 207(2025) vom: 17. Sept., Seite 115123
1. Verfasser: Prasad, Vineet (VerfasserIn)
Weitere Verfasser: Arashpour, Mehrdad
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article AI-Driven Sorting Construction and Demolition Waste Grasp Detection Instance Segmentation Sorting Automation
LEADER 01000caa a22002652c 4500
001 NLM392691930
003 DE-627
005 20250927232122.0
007 cr uuu---uuuuu
008 250918s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2025.115123  |2 doi 
028 5 2 |a pubmed25n1582.xml 
035 |a (DE-627)NLM392691930 
035 |a (NLM)40961816 
035 |a (PII)S0956-053X(25)00534-3 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Prasad, Vineet  |e verfasserin  |4 aut 
245 1 0 |a Enhancing sorting efficiency in cluttered construction and demolition waste streams via boundary-guided grasp detection 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.09.2025 
500 |a Date Revised 26.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2025 The Author(s). Published by Elsevier Ltd.. All rights reserved. 
520 |a Robotic automation is instrumental in the valorization of construction and demolition waste (CDW), facilitating scalable and efficient material recovery in response to rising waste volumes from accelerated urban development. AI-driven computer vision (CV) has advanced perception-focused tasks in CDW processing, such as classification, object detection, and segmentation. However, the subsequent action-focused task of robotic CDW grasp detection remains underexplored. Identifying optimal, collision-free gripper poses for CDW recyclables is particularly challenging in cluttered environments and is further limited by the need for large amounts of grasp-annotated training data. This paper therefore presents a robust CDW grasp detection method that leverages boundary features of CDW objects to guide grasp predictions via attentional feature fusion. Our approach builds upon recent advances in shape-aware CDW instance segmentation and takes advantage of the growing availability of high-quality segmentation data, enabled by automated labelling techniques using large language models (LLMs). To address the shortage of publicly available grasp-annotated CDW data, we also introduce ReCoDeWaste; the first RGB-D CDW instance segmentation and grasp detection dataset tailored for off-site AI-based sorting training and evaluation. Designed to capture the compositional complexity of CDW, ReCoDeWaste contains over 100,000 annotated waste object instances across diverse cluttered scenes. Experimental results demonstrate that our boundary-guided grasp detection model predicts collision-free grasps for detected recyclables in these cluttered streams, outperforming state-of-the-art methods in standard evaluation metrics and achieving up to 94.36% grasp detection accuracy. This research serves to enhance CDW valorization by transitioning efforts to action-focused CV tasks that go beyond recognition and classification 
650 4 |a Journal Article 
650 4 |a AI-Driven Sorting 
650 4 |a Construction and Demolition Waste 
650 4 |a Grasp Detection 
650 4 |a Instance Segmentation 
650 4 |a Sorting Automation 
700 1 |a Arashpour, Mehrdad  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 207(2025) vom: 17. Sept., Seite 115123  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:207  |g year:2025  |g day:17  |g month:09  |g pages:115123 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2025.115123  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 207  |j 2025  |b 17  |c 09  |h 115123