LVOS : A Benchmark for Large-Scale Long-Term Video Object Segmentation

Video object segmentation (VOS) aims to distinguish and track target objects in a video. Despite the excellent performance achieved by off-the-shelf VOS models, part of the existing VOS benchmarks mainly focuses on short-term videos, where objects remain visible most of the time. However, these benc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2025) vom: 17. Sept.
1. Verfasser: Hong, Lingyi (VerfasserIn)
Weitere Verfasser: Liu, Zhongying, Chen, Wenchao, Tan, Chenzhi, Feng, Yuang, Zhou, Xinyu, Guo, Pinxue, Li, Jinglun, Chen, Zhaoyu, Gao, Shuyong, Zhang, Wei, Zhang, Wenqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM39268344X
003 DE-627
005 20250918232434.0
007 cr uuu---uuuuu
008 250918s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3611020  |2 doi 
028 5 2 |a pubmed25n1573.xml 
035 |a (DE-627)NLM39268344X 
035 |a (NLM)40960968 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hong, Lingyi  |e verfasserin  |4 aut 
245 1 0 |a LVOS  |b A Benchmark for Large-Scale Long-Term Video Object Segmentation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Video object segmentation (VOS) aims to distinguish and track target objects in a video. Despite the excellent performance achieved by off-the-shelf VOS models, part of the existing VOS benchmarks mainly focuses on short-term videos, where objects remain visible most of the time. However, these benchmarks may not fully capture challenges encountered in practical applications, and the absence of long-term datasets restricts further investigation of VOS in realistic scenarios. Thus, we propose a novel benchmark named LVOS, comprising 720 videos with 296,401 frames and 407,945 high-quality annotations. Videos in LVOS last 1.14 minutes on average. Each video includes various attributes, especially challenges encountered in the wild, such as long-term reappearing and cross-temporal similar objects. Compared to previous benchmarks, our LVOS better reflects VOS models' performance in real scenarios. Based on LVOS, we evaluate 15 existing VOS models under 3 different settings and conduct a comprehensive analysis. On LVOS, these models suffer a large performance drop, highlighting the challenge of achieving precise tracking and segmentation in real-world scenarios. Attribute-based analysis indicates that one of the significant factors contributing to accuracy decline is the increased video length, interacting with complex challenges such as long-term reappearance, cross-temporal confusion, and occlusion, which emphasize LVOS's crucial role. We hope our LVOS can advance development of VOS in real scenes 
650 4 |a Journal Article 
700 1 |a Liu, Zhongying  |e verfasserin  |4 aut 
700 1 |a Chen, Wenchao  |e verfasserin  |4 aut 
700 1 |a Tan, Chenzhi  |e verfasserin  |4 aut 
700 1 |a Feng, Yuang  |e verfasserin  |4 aut 
700 1 |a Zhou, Xinyu  |e verfasserin  |4 aut 
700 1 |a Guo, Pinxue  |e verfasserin  |4 aut 
700 1 |a Li, Jinglun  |e verfasserin  |4 aut 
700 1 |a Chen, Zhaoyu  |e verfasserin  |4 aut 
700 1 |a Gao, Shuyong  |e verfasserin  |4 aut 
700 1 |a Zhang, Wei  |e verfasserin  |4 aut 
700 1 |a Zhang, Wenqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2025) vom: 17. Sept.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2025  |g day:17  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3611020  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2025  |b 17  |c 09