Development of a pH/Cellulase Dual-Responsive Fe-MOFs Delivery System for Targeted Control of Maize Fungal Diseases

The iron-based metal-organic frameworks (Fe-MOFs) NH2-MIL-101(Fe) (MIL) has gained widespread attention as a drug carrier material in agriculture. In this study, a multifunctional nanocomposite, MILA@D@C, was successfully synthesized by loading the fungicide azoxystrobin (AZOX) and immunoinducer d-c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 41(2025), 36 vom: 16. Sept., Seite 24307-24318
1. Verfasser: Li, Yuanbo (VerfasserIn)
Weitere Verfasser: Zhang, Taiming, Ding, Yanru, Chen, Yuhao, Rui, Yukui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652c 4500
001 NLM392631504
003 DE-627
005 20250916235006.0
007 cr uuu---uuuuu
008 250916s2025 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.5c02196  |2 doi 
028 5 2 |a pubmed25n1570.xml 
035 |a (DE-627)NLM392631504 
035 |a (NLM)40889348 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Yuanbo  |e verfasserin  |4 aut 
245 1 0 |a Development of a pH/Cellulase Dual-Responsive Fe-MOFs Delivery System for Targeted Control of Maize Fungal Diseases 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status In-Process 
520 |a The iron-based metal-organic frameworks (Fe-MOFs) NH2-MIL-101(Fe) (MIL) has gained widespread attention as a drug carrier material in agriculture. In this study, a multifunctional nanocomposite, MILA@D@C, was successfully synthesized by loading the fungicide azoxystrobin (AZOX) and immunoinducer d-cellobiose (D) onto MIL, followed by surface modification with carboxymethyl cellulose (CMC). The loading capacity of MIL was optimized by varying solvent conditions and the mass ratio of MIL to AZOX, revealing that ethanol as the reaction solvent and a MIL: AZOX mass ratio of 1:4 resulted in the highest loading efficiency (6.73%). MIL@A@D@C exhibited pH- and cellulase-responsive controlled release behavior. In vitro antifungal assays demonstrated that MIL@A@D@C at a low concentration of 1 ppm effectively inhibited Colletotrichum graminicola (the causal agent of maize anthracnose). Foliar application experiments further confirmed that the composite formulation achieved significant inhibition at a low dosage of 10 ppm, outperforming commercial azoxystrobin products. Plant and animal safety assessments indicated that MIL@A@D@C possessed enhanced biosafety. These findings highlight the potential of MIL@A@D@C as an environmentally friendly and highly effective nanodelivery system for crop disease management 
650 4 |a Journal Article 
700 1 |a Zhang, Taiming  |e verfasserin  |4 aut 
700 1 |a Ding, Yanru  |e verfasserin  |4 aut 
700 1 |a Chen, Yuhao  |e verfasserin  |4 aut 
700 1 |a Rui, Yukui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 41(2025), 36 vom: 16. Sept., Seite 24307-24318  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnas 
773 1 8 |g volume:41  |g year:2025  |g number:36  |g day:16  |g month:09  |g pages:24307-24318 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.5c02196  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 41  |j 2025  |e 36  |b 16  |c 09  |h 24307-24318