Drought-activated BZR1 reprograms flavonoid metabolism via transcriptional cascades to amplify baicalin biosynthesis in Scutellaria baicalensis

Copyright © 2025 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 227(2025) vom: 01. Sept., Seite 110196
1. Verfasser: Li, Xian (VerfasserIn)
Weitere Verfasser: Chen, Chong, Cao, Bo, Feng, Shan, Zhang, Yali, Bin, Tiantian, Zhou, Xiaofang, Liu, Lianjin, Hu, Suying, Zheng, Bowen, Li, Guishuang, Bai, Chengke
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Drought resilience Flavonoid biosynthesis Glycoside-aglycone ratio Growth-defense trade-off Metabolic reprogramming SbBZR1 Flavonoids baicalin 347Q89U4M5 mehr... Transcription Factors Arabidopsis Proteins Plant Proteins BZR1 protein, Arabidopsis DNA-Binding Proteins
LEADER 01000naa a22002652c 4500
001 NLM392625652
003 DE-627
005 20250916234443.0
007 cr uuu---uuuuu
008 250916s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2025.110196  |2 doi 
028 5 2 |a pubmed25n1570.xml 
035 |a (DE-627)NLM392625652 
035 |a (NLM)40609391 
035 |a (PII)S0981-9428(25)00724-7 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xian  |e verfasserin  |4 aut 
245 1 0 |a Drought-activated BZR1 reprograms flavonoid metabolism via transcriptional cascades to amplify baicalin biosynthesis in Scutellaria baicalensis 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2025 
500 |a Date Revised 16.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2025 Elsevier Masson SAS. All rights reserved. 
520 |a Environmental stress triggers a dual response in medicinal plants by inhibiting growth while enhancing secondary metabolite production. However, the regulatory mechanism of this trade-off remains unclear. Here, we identified SbBZR1 as a brassinosteroid (BR)-responsive transcription factor that orchestrates drought resilience and baicalin biosynthesis in Scutellaria baicalensis through integrated multi-omics and metabolic flux analysis. In general, drought stress upregulated BR signaling and SbBZR1 expression. Transgenic Arabidopsis expressing SbBZR1 and its hyperactive mutant (Sbbzr1-1D) exhibited enhanced drought tolerance: 57 % greater biomass, 43 % increased root density, and 62 % reduced lipid peroxidation via antioxidant gene activation (AtDHAR1, AtCAT2, AtSOD1). In S. baicalensis hairy roots, SbBZR1 overexpression increased biomass (68 %) and anthocyanins (2.3-fold), while upregulating flavonoid genes (SbPAL, SbCHS, SbCHI). Under gradient drought, SbBZR1 reprogrammed metabolism dose-dependently: mild stress (1 % PEG) elevated both glycosides (baicalin +128 %) and aglycones (baicalein +196 %), whereas Sbbzr1-1D prioritized glycoside production (3.42-fold baicalin; glycoside-aglycone ratio 15.02 vs. WT 3.93). Mechanistically, Sbbzr1-1D amplified phenylpropanoid flux via SbPAL and SbF8H (4.1-6.3 fold) while suppressing deglycosylation (β-glucuronidase, SbGUS 72 % down-expression). Exogenous epibrassinolide (eBL) treatment confirmed SbBZR1 amplifies BR sensitivity, boosting baicalin yields 2.1-3.8 fold. The BR-SbBZR1 axis dynamically coordinates drought-induced transcriptional bursts (SbFNSII-2, SbF6H) with flavonoid accrual, while differentially regulating glycosylation (SbUBGAT up-expression) and deglycosylation (SbGUS down-expression). Collectively, these results first reveal the transcriptional logic of stress-driven phytochemical enhancement and provide valuable references for engineering drought-resistant crops through precision metabolic regulation 
650 4 |a Journal Article 
650 4 |a Drought resilience 
650 4 |a Flavonoid biosynthesis 
650 4 |a Glycoside-aglycone ratio 
650 4 |a Growth-defense trade-off 
650 4 |a Metabolic reprogramming 
650 4 |a SbBZR1 
650 7 |a Flavonoids  |2 NLM 
650 7 |a baicalin  |2 NLM 
650 7 |a 347Q89U4M5  |2 NLM 
650 7 |a Transcription Factors  |2 NLM 
650 7 |a Arabidopsis Proteins  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a BZR1 protein, Arabidopsis  |2 NLM 
650 7 |a DNA-Binding Proteins  |2 NLM 
700 1 |a Chen, Chong  |e verfasserin  |4 aut 
700 1 |a Cao, Bo  |e verfasserin  |4 aut 
700 1 |a Feng, Shan  |e verfasserin  |4 aut 
700 1 |a Zhang, Yali  |e verfasserin  |4 aut 
700 1 |a Bin, Tiantian  |e verfasserin  |4 aut 
700 1 |a Zhou, Xiaofang  |e verfasserin  |4 aut 
700 1 |a Liu, Lianjin  |e verfasserin  |4 aut 
700 1 |a Hu, Suying  |e verfasserin  |4 aut 
700 1 |a Zheng, Bowen  |e verfasserin  |4 aut 
700 1 |a Li, Guishuang  |e verfasserin  |4 aut 
700 1 |a Bai, Chengke  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 227(2025) vom: 01. Sept., Seite 110196  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnas 
773 1 8 |g volume:227  |g year:2025  |g day:01  |g month:09  |g pages:110196 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2025.110196  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 227  |j 2025  |b 01  |c 09  |h 110196