Autonomous screening of complex phase spaces using Bayesian optimization for SAXS measurements

The advent of modern, ultrafast X-ray experiments has enabled scientists to probe physical phenomena at an ever smaller scale. However, this has come at a cost of excessive data generation, to the point where current storage and hardware capabilities are routinely surpassed. As such, handling the da...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment. - 1987. - 1057(2023) vom: 27. Dez.
1. Verfasser: Younes, Khaled (VerfasserIn)
Weitere Verfasser: Poli, Michael, Muhunthan, Priyanka, Rajkovic, Ivan, Ermon, Stefano, Weiss, Thomas M, Ihme, Matthias
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
Schlagworte:Journal Article Bayesian optimization SAXS online screening phase space sampling supercritical fluids
LEADER 01000naa a22002652c 4500
001 NLM392540274
003 DE-627
005 20250916232640.0
007 cr uuu---uuuuu
008 250916s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.nima.2023.168719  |2 doi 
028 5 2 |a pubmed25n1568.xml 
035 |a (DE-627)NLM392540274 
035 |a (NLM)40880750 
035 |a (PII)168719 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Younes, Khaled  |e verfasserin  |4 aut 
245 1 0 |a Autonomous screening of complex phase spaces using Bayesian optimization for SAXS measurements 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.09.2025 
500 |a Date Revised 15.09.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The advent of modern, ultrafast X-ray experiments has enabled scientists to probe physical phenomena at an ever smaller scale. However, this has come at a cost of excessive data generation, to the point where current storage and hardware capabilities are routinely surpassed. As such, handling the data efficiently and selectively storing only the information of most relevance is crucial. In this paper, we propose to use Bayesian optimization as a method to alleviate this problem. We apply the method to locate global features in Small Angle X-ray Scattering spectra obtained from conducting experiments with supercritical CO2. By evaluating the algorithm on more than 250 data points, we show that the implementation is versatile, robust, and computationally efficient, often converging with just a few iterations and with a minimal error penalty. This paves the way for creating fully autonomous experiments, where data science algorithms such as the one presented herein operate hand-in-hand with the expert user to maximize scientific discovery and minimize the associated experimental cost 
650 4 |a Journal Article 
650 4 |a Bayesian optimization 
650 4 |a SAXS 
650 4 |a online screening 
650 4 |a phase space sampling 
650 4 |a supercritical fluids 
700 1 |a Poli, Michael  |e verfasserin  |4 aut 
700 1 |a Muhunthan, Priyanka  |e verfasserin  |4 aut 
700 1 |a Rajkovic, Ivan  |e verfasserin  |4 aut 
700 1 |a Ermon, Stefano  |e verfasserin  |4 aut 
700 1 |a Weiss, Thomas M  |e verfasserin  |4 aut 
700 1 |a Ihme, Matthias  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment  |d 1987  |g 1057(2023) vom: 27. Dez.  |w (DE-627)NLM098171771  |x 0168-9002  |7 nnas 
773 1 8 |g volume:1057  |g year:2023  |g day:27  |g month:12 
856 4 0 |u http://dx.doi.org/10.1016/j.nima.2023.168719  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 1057  |j 2023  |b 27  |c 12