Kernelized Hypergraph Neural Networks

Hypergraph Neural Networks (HGNNs) have attracted much attention for high-order structural data learning. Existing methods mainly focus on simple mean-based aggregation or manually combining multiple aggregations to capture multiple information on hypergraphs. However, those methods inherently lack...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 10 vom: 01. Sept., Seite 8938-8954
Auteur principal: Feng, Yifan (Auteur)
Autres auteurs: Zhang, Yifan, Ying, Shihui, Du, Shaoyi, Gao, Yue
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
Description
Résumé:Hypergraph Neural Networks (HGNNs) have attracted much attention for high-order structural data learning. Existing methods mainly focus on simple mean-based aggregation or manually combining multiple aggregations to capture multiple information on hypergraphs. However, those methods inherently lack continuous non-linear modeling ability and are sensitive to varied distributions. Although some kernel-based aggregations on GNNs and CNNs can capture non-linear patterns to some degree, those methods are restricted in the low-order correlation and may cause unstable computation in training. In this work, we introduce Kernelized Hypergraph Neural Networks (KHGNN) and its variant, Half-Kernelized Hypergraph Neural Networks (H-KHGNN), which synergize mean-based and max-based aggregation functions to enhance representation learning on hypergraphs. KHGNN's kernelized aggregation strategy adaptively captures both semantic and structural information via learnable parameters, offering a mathematically grounded blend of kernelized aggregation approaches for comprehensive feature extraction. H-KHGNN addresses the challenge of overfitting in less intricate hypergraphs by employing non-linear aggregation selectively in the vertex-to-hyperedge message-passing process, thus reducing model complexity. Our theoretical contributions reveal a bounded gradient for kernelized aggregation, ensuring stability during training and inference. Empirical results demonstrate that KHGNN and H-KHGNN outperform state-of-the-art models across 10 graph/hypergraph datasets, with ablation studies demonstrating the effectiveness and computational stability of our method
Description:Date Revised 12.09.2025
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2025.3585179