Investigating Synthetic-to-Real Transfer Robustness for Stereo Matching and Optical Flow Estimation

With advancements in robust stereo matching and optical flow estimation networks, models pre-trained on synthetic data demonstrate strong robustness to unseen domains. However, their robustness can be seriously degraded when fine-tuning them in real-world scenarios. This paper investigates fine-tuni...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 10 vom: 18. Sept., Seite 9113-9129
Auteur principal: Zhang, Jiawei (Auteur)
Autres auteurs: Li, Jiahe, Huang, Lei, Luo, Haonan, Yu, Xiaohan, Gu, Lin, Zheng, Jin, Bai, Xiao
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article