Accelerated Self-Supervised Multi-Illumination Color Constancy With Hybrid Knowledge Distillation

Color constancy, the human visual system's ability to perceive consistent colors under varying illumination conditions, is crucial for accurate color perception. Recently, deep learning algorithms have been introduced into this task and have achieved remarkable achievements. However, existing m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 10 vom: 01. Sept., Seite 8955-8972
1. Verfasser: Feng, Ziyu (VerfasserIn)
Weitere Verfasser: Li, Bing, Lang, Congyan, Xu, Zheming, Qin, Haina, Wang, Juan, Xiong, Weihua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM392371650
003 DE-627
005 20250914232037.0
007 cr uuu---uuuuu
008 250912s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3583090  |2 doi 
028 5 2 |a pubmed25n1566.xml 
035 |a (DE-627)NLM392371650 
035 |a (NLM)40560704 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Feng, Ziyu  |e verfasserin  |4 aut 
245 1 0 |a Accelerated Self-Supervised Multi-Illumination Color Constancy With Hybrid Knowledge Distillation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.09.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Color constancy, the human visual system's ability to perceive consistent colors under varying illumination conditions, is crucial for accurate color perception. Recently, deep learning algorithms have been introduced into this task and have achieved remarkable achievements. However, existing methods are limited by the scale of current multi-illumination datasets and model size, hindering their ability to learn discriminative features effectively and their practical value for deployment in cameras. To overcome these limitations, this paper proposes a multi-illumination color constancy approach based on self-supervised learning and knowledge distillation. This approach includes three phases: self-supervised pre-training, supervised fine-tuning, and knowledge distillation. During the pre-training phase, we train Transformer-based and U-Net based encoders by two pretext tasks: light normalization task to learn lighting color contextual representation and grayscale colorization task to acquire objects' inherent color information. For the downstream color constancy task, we fine-tune the encoders and design a lightweight decoder to obtain better illumination distributions with fewer parameters. During the knowledge distillation phase, we introduce a hybrid knowledge distillation technique to align CNN features with those of Transformer and U-Net respectively. Our proposed method outperforms state-of-the-art techniques on multi-illumination and single-illumination benchmarks. Extensive ablation studies and visualizations confirm the effectiveness of our model 
650 4 |a Journal Article 
700 1 |a Li, Bing  |e verfasserin  |4 aut 
700 1 |a Lang, Congyan  |e verfasserin  |4 aut 
700 1 |a Xu, Zheming  |e verfasserin  |4 aut 
700 1 |a Qin, Haina  |e verfasserin  |4 aut 
700 1 |a Wang, Juan  |e verfasserin  |4 aut 
700 1 |a Xiong, Weihua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 10 vom: 01. Sept., Seite 8955-8972  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:10  |g day:01  |g month:09  |g pages:8955-8972 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3583090  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 10  |b 01  |c 09  |h 8955-8972