On the improved estimation of the normal mixture components for longitudinal data

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 52(2025), 12 vom: 03., Seite 2271-2290
1. Verfasser: Nummi, Tapio (VerfasserIn)
Weitere Verfasser: Möttönen, Jyrki, Väkeväinen, Pasi, Salonen, Janne, O'Brien, Timothy E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Box-Cox transformation finite mixtures mixture regression number of mixture components trajectory analysis
LEADER 01000caa a22002652c 4500
001 NLM392302632
003 DE-627
005 20250912232408.0
007 cr uuu---uuuuu
008 250910s2025 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2025.2459293  |2 doi 
028 5 2 |a pubmed25n1565.xml 
035 |a (DE-627)NLM392302632 
035 |a (NLM)40927351 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nummi, Tapio  |e verfasserin  |4 aut 
245 1 0 |a On the improved estimation of the normal mixture components for longitudinal data 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.09.2025 
500 |a published: Electronic-eCollection 
500 |a Citation Status In-Process 
520 |a © 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
520 |a When analyzing real data sets, statisticians often face the question that the data are heterogeneous and it may not necessarily be possible to model this heterogeneity directly. One natural option in this case is to use the methods based on finite mixtures. The key question in these techniques often is what is the best number of mixtures or, depending on the focus of the analysis, the best number of sub-populations when the model is otherwise fixed. Moreover, when the distribution of the response variable deviates from meeting the assumptions, it's common to employ an appropriate transformation to align the distribution with the model's requirements. To solve the problem in the mixture regression context we propose a technique based on the scaled Box-Cox transformation for normal mixtures. The specific focus here is on mixture regression for longitudinal data, the so-called trajectory analysis. We present interesting practical results as well as simulation experiments to demonstrate that our method yields reasonable results. Associated R-programs are also provided 
650 4 |a Journal Article 
650 4 |a Box-Cox transformation 
650 4 |a finite mixtures 
650 4 |a mixture regression 
650 4 |a number of mixture components 
650 4 |a trajectory analysis 
700 1 |a Möttönen, Jyrki  |e verfasserin  |4 aut 
700 1 |a Väkeväinen, Pasi  |e verfasserin  |4 aut 
700 1 |a Salonen, Janne  |e verfasserin  |4 aut 
700 1 |a O'Brien, Timothy E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 52(2025), 12 vom: 03., Seite 2271-2290  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:52  |g year:2025  |g number:12  |g day:03  |g pages:2271-2290 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2025.2459293  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2025  |e 12  |b 03  |h 2271-2290