On use of adaptive cluster sampling for variance estimation

© 2025 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 52(2025), 12 vom: 03., Seite 2291-2305
1. Verfasser: Alam, Shameem (VerfasserIn)
Weitere Verfasser: Shabbir, Javid, Nadeem, Malaika
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Adaptive cluster sampling auxiliary information bias mean square error
LEADER 01000naa a22002652c 4500
001 NLM392302535
003 DE-627
005 20250910232558.0
007 cr uuu---uuuuu
008 250910s2025 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2025.2460072  |2 doi 
028 5 2 |a pubmed25n1563.xml 
035 |a (DE-627)NLM392302535 
035 |a (NLM)40927353 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Alam, Shameem  |e verfasserin  |4 aut 
245 1 0 |a On use of adaptive cluster sampling for variance estimation 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.09.2025 
500 |a published: Electronic-eCollection 
500 |a Citation Status In-Process 
520 |a © 2025 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Adaptive cluster sampling is particularly helpful whenever the target population is unique, dispersed unevenly, concealed or difficult to find. In the current investigation, under an adaptive cluster sampling approach, we propose a ratio-product-logarithmic type estimator employing a single auxiliary variable for the estimation of finite population variance. The bias and mean square error of the proposed estimator are developed by using simulation as well as real data sets. The study results show that for estimating the finite population variance, the proposed estimator outperforms the competing estimators 
650 4 |a Journal Article 
650 4 |a Adaptive cluster sampling 
650 4 |a auxiliary information 
650 4 |a bias 
650 4 |a mean square error 
700 1 |a Shabbir, Javid  |e verfasserin  |4 aut 
700 1 |a Nadeem, Malaika  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 52(2025), 12 vom: 03., Seite 2291-2305  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:52  |g year:2025  |g number:12  |g day:03  |g pages:2291-2305 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2025.2460072  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2025  |e 12  |b 03  |h 2291-2305